Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists equip bacteria with custom chemo-navigational system

14.05.2007
Using an innovative method to control the movement of Escherichia coli in a chemical environment, Emory University scientists have opened the door to powerful new opportunities in drug delivery, environmental cleanup and synthetic biology. Their findings are published online in the Journal of the American Chemical Society and will be published in a future print issue.

Justin Gallivan, PhD, assistant professor of chemistry, and graduate student Shana Topp successfully reprogrammed E. coli's chemo-navigational system to detect, follow and precisely localize to specific chemical signals. In doing so, the scientists exploited E. coli's natural chemotaxis, a microbe's ability to move toward specific chemicals in its environment.

"Equipping bacteria with a way to degrade pollutants, synthesize and release therapeutics, or transport chemicals with an ability to localize to a specific chemical signal would open new frontiers in environmental cleanup, drug delivery and synthetic biology," says Dr. Gallivan.

The researchers equipped E. coli with a "riboswitch," a segment of RNA that changes shape when bound to certain small target molecules, which can then turn genes on or off. Dr. Gallivan and Topp believe that the riboswitch can be used to equip other types of self-propelled bacteria with "chemo-navigation" systems to move them toward desired targets.

... more about:
»Environment »Gallivan »equip

Chemotactic bacteria navigate chemical environments by coupling their information-processing capabilities to powerful, tiny molecular motors that propel the cells forward.

Researchers have long envisioned reprogramming bacteria so that microbes capable of synthesizing an anti-cancer drug, for instance, can be used to target diseased cells while sparing healthy cells of side effects. Likewise, scientists are researching ways to use bacteria to clean up oil spills or remove other pollutants from soil, water and wastewater.

"This new ability to equip motile bacteria with a precise and tunable chemo-navigation system will greatly enhance the impressive arsenal of natural and engineered cell behaviors," says Dr. Gallivan.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Environment Gallivan equip

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>