Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorectal cancers use the protein “fascin” to invade the organism

14.05.2007
Colorectal cancer exploits the power of a protein called “fascin” to form metastasis at distant sites. But when secondary tumors are well established, it “fires” the protein by turning off its gene. Fascin, thus, could represent a novel target to halt the dissemination of malignant cells from the primary site to target organs, a typical behavior of metastasis.

Finding the way to inhibit either the protein or its gene activity could lead to the establishment of novel therapies aimed at controlling colorectal cancers, the second most frequent cause of tumor death in Europe after lung cancer (with some 655.000 deaths worldwide).

These results stem from a collaborative effort involving scientists from the Institut Curie in Paris, the Weizmann Institute of Science in Rehovot (Israel) and the Department of Surgery of the Technischen Universitat in Munich. The research was presented on May 12th during the first session of the Workshop on Cell Migration: From Molecules to Organisms and Diseases, an event promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM The FIRC Institute of Molecular Oncology, and IEO – European Institute of Oncology. Venue of the Workshop is the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents to date the biggest area dedicated to the oncological research in Europe.

Fascin is a protein that serves to aggregate cellular filaments into bundles, in order to rearrange the cellular frame (called cytoskeleton) and promote the motility. In view of this capacity, several groups of scientists have tried to find a correlation between the presence of fascin and the ability to form metastasis that many tumors exhibit. So far, however, its precise role in tumor development and dissemination was little characterized. Danijela Vignjevic from the UMR144/CNRS, at Institute Curie in Paris, who presented the research at the Workshop, explained the new discovery in details: “Cancer cells become metastatic because they acquire the ability to move and to invade other tissues. This new behavior relies on sensory organelles (common to all the cells that able to move) called filopodia, that sense the environment and help the cells to decide where to go. Fascin is a key component of filopodia, and, inside the colorectal cancer cells, it represents the target of a circuitry that leads to the activation of several genes.”

... more about:
»Fascin »Protein »metastasis »represent

Among the key findings, the investigation proved that the concentration of fascin increases according to the tumor stage: in other words, as the tumor progresses fascin becomes more and more active. In vitro tests revealed that its presence promotes cells migration and invasion, and in vivo experiments confirmed its pro-metastatic power. “There is an interesting feature about this protein” pointed out Danijela Vignjevic. “After the tumor has colonized distant sites fascin is no longer active: it is as if the tumor itself recruited it for its purposes until the malignant cells have spread. When it has arrived at its final destination fascin is no longer needed”. As next goal, Vignjevic and colleagues hope to generate a transgenic mouse model for colon cancer metastasis that will provide further insight into the molecular mechanisms of this disease.

“It is tempting to speculate about some possible therapeutic intervention that could derive from this discovery” comments Giorgio Scita, leader of the Signaling regulating acting dynamics in cell motility group at IFOM, and among the Workshop organizers. “However more investigations will be needed before we can think of moving from bench to bedside”.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Fascin Protein metastasis represent

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>