Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of entirely new process in cell RNA

11.05.2007
Uppsala University scientists have discovered an entirely new process in which short, tiny “antisense RNA” competes with the protein-producing ribosomes for starting sites for reading messenger RNA. These unexpected findings are being presented in the new issue of the prestigious journal Molecular Cell.

When cells grow and reproduce, they must constantly produce new proteins from their building blocks, 20 different amino acids. These proteins are put together by ribosomes, which move along messenger RNA molecules to read and translate information to the sequences of amino acids that determine the function of all of the proteins in the cell.

It was previously known that short, tiny control RNA, called antisense RNA, can stop the activity of genes by placing themselves so that “reading” of the code is impeded. It has been shown that this occurs in bacteria in that antisense RNA sets up base pairs with a certain messenger RNA (m-RNA) precisely where the ribosomes would start their reading.

“This is inhibits the reading. Ribosomes need single-strand RNA in order to start,” says Gerhart Wagner, professor of procaryote microbiology at Uppsala University.

... more about:
»Cell »RNA »amino acid »entirely »ribosome

In the Uppsala researchers’ study, an unexpected and entirely new mechanism was uncovered for this regulation of protein synthesis, which cannot be explained by a model in which antisense RNA blocks the ribosomes’ starting site on messenger RNA. In this case, instead, antisense RNA sets up base pairs far away from where the reading should start­-but still manages to stop the reading. It turns out that when a ribosome comes to a starting site that is “closed,” it attaches instead to an “open” site further along and waits for the proper site to become available.

“This is binding in stand-by, you might say. But we can show that antisense RNA competes with the ribosomes to be able to attach to this stand-by site as well. And if they get there first, then protein synthesis is prevented. This is something no one has seen before, and it provides a new picture of the innermost process of life,” says Gerhart Wagner.

Anneli Waara | alfa
Further information:
http://www.molecule.org/content/article/abstract?uid=PIIS1097276507002195

Further reports about: Cell RNA amino acid entirely ribosome

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>