Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of entirely new process in cell RNA

Uppsala University scientists have discovered an entirely new process in which short, tiny “antisense RNA” competes with the protein-producing ribosomes for starting sites for reading messenger RNA. These unexpected findings are being presented in the new issue of the prestigious journal Molecular Cell.

When cells grow and reproduce, they must constantly produce new proteins from their building blocks, 20 different amino acids. These proteins are put together by ribosomes, which move along messenger RNA molecules to read and translate information to the sequences of amino acids that determine the function of all of the proteins in the cell.

It was previously known that short, tiny control RNA, called antisense RNA, can stop the activity of genes by placing themselves so that “reading” of the code is impeded. It has been shown that this occurs in bacteria in that antisense RNA sets up base pairs with a certain messenger RNA (m-RNA) precisely where the ribosomes would start their reading.

“This is inhibits the reading. Ribosomes need single-strand RNA in order to start,” says Gerhart Wagner, professor of procaryote microbiology at Uppsala University.

... more about:
»Cell »RNA »amino acid »entirely »ribosome

In the Uppsala researchers’ study, an unexpected and entirely new mechanism was uncovered for this regulation of protein synthesis, which cannot be explained by a model in which antisense RNA blocks the ribosomes’ starting site on messenger RNA. In this case, instead, antisense RNA sets up base pairs far away from where the reading should start­-but still manages to stop the reading. It turns out that when a ribosome comes to a starting site that is “closed,” it attaches instead to an “open” site further along and waits for the proper site to become available.

“This is binding in stand-by, you might say. But we can show that antisense RNA competes with the ribosomes to be able to attach to this stand-by site as well. And if they get there first, then protein synthesis is prevented. This is something no one has seen before, and it provides a new picture of the innermost process of life,” says Gerhart Wagner.

Anneli Waara | alfa
Further information:

Further reports about: Cell RNA amino acid entirely ribosome

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>