Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develope a new model of artificial canine skin

11.05.2007
Researchers at UNIVET, a spin-off of the Universitat Autònoma de Barcelona, in cooperation with the animal nutrition company Affinity Petcare, have developed an artificial cellular model which faithfully reproduces the characteristics of dog's skin and which will allow, therefore, the carrying out of various lines of research related to skin biology and pathology without the need to use live animals.

The basic structure of skin consists of an external layer, the epidermis, and an internal layer, the dermis, separated by a basal membrane. A study of the interactions between the cell populations of the various layers is of vital importance for skin biology, but these interactions cannot be investigated adequately by means of conventional cell cultures.

Researchers at the UAB and UNIVET, in cooperation with Affinity Petcare, have developed an artificial canine skin model, very similar to normal skin, which is useful for research and which represents an alternative to the use of animals in research. The model allows the study of those illnesses which most often affect dogs’ skin without the need to use animals.

To develop this model, cells from the epidermis (keratocytes) and the dermis (fibroblasts) from samples of healthy dogs were used. The dermis cells, inserted into a collagen marix (a very common protein in skin and joints), were used as a support for the epidermis cells, which were grown on its surface and were kept in growth conditions exposed to air. The cells proliferated forming the various layers of the epidermis.

... more about:
»DermIS »Epidermis »Model »canine »skin

The model develops a morphological structure similar to that of canine skin. Additionally, the expression of the dermis and epidermis proteins follows the same pattern of expression as that of normal canine skin, even forming a basal membrane, which also maintains the characteristics of conventional skin.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: DermIS Epidermis Model canine skin

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>