Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DCU researches synthetic bone and soft tissue to replace human grafts

10.05.2007
Missing bones after an accident? Arteries destroyed by disease? An international team of DCU researchers have begun work on ways of producing synthetic hard and soft tissue for humans that could revolutionise treatment for people affected by disease and trauma.

The European Commission funded project, costing about €1.2m, is being coordinated by Dr. Lisa Looney, Director of the DCU Materials Processing Research Centre, and a senior lecturer in the School of Mechanical and Manufacturing Engineering.

Dr. Looney said: “There are several circumstances under which it is necessary to replace human tissue, either on a permanent or temporary basis. The current ‘gold standard’ in replacing both bone and vascular tissue is to use grafts of bone and soft tissue from other sites in the patient, but this can be problematic.

“Tissue may not be available, and the ‘double’ procedure of two operations, one to harvest the bone or soft tissue, and another to ‘fit’ it in the replacement site, incurs higher risk of infection, pain and prolongs hospital stays.

... more about:
»DCU »replacement »synthetic »vascular

“Synthetic alternatives do exist, but haven’t found widespread application due to difficulties in producing the optimum material structure and properties, in a repeatable and controllable manner.

“The research at DCU will study a number of innovative manufacturing processes with a view to achieving this control and repeatability, while refining the architecture, strength and texture of the tissue substitutes and measuring living cells response to these new synthetic replacements.”

Obviously the techniques will differ for soft vascular tissue and bone replacements – the group is studying both.

Dr Looney is joined by other senior investigators in this work, Dr Garrett McGuinness, Dr Joseph Stokes and Dr Dermot Brabazon. DCU’s vascular health research centre is collaborating with the project as well as engineers in ITT Dublin.

The research is being funded under the EU’s Marie Curie Early Stage Training (EST) programme, and will be implemented by seven postgraduate level researchers over the next 3 years. These highly qualified young researchers have been recruited from across Europe (Poland, Spain (2), Hungary (2) and further afield (Turkey and China), from a range of disciplines (mechanical, biomedical and industrial engineering, biology and biotechnology)

The synthetic materials being used in the research are, for bone, calcium phosphate bioceramics mixed with various bio polymers and for vascular work, special polymers called hydrogels.

Shane Kenny | alfa
Further information:
http://www.dcu.ie

Further reports about: DCU replacement synthetic vascular

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>