Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule That Destroys Bone Also Protects It

09.05.2007
An immune system component that is a primary cause of bone destruction and inflammation in autoimmune diseases such as rheumatoid arthritis actually protects bone in the oral cavity from infectious pathogens that play a major role in periodontal disease in humans, research at the University at Buffalo has shown.

The component, IL-17, was recognized only in the past 18 months to be a primary cause of bone destruction and inflammation in autoimmune diseases. Therapies that target IL-17 or its cellular receptor currently are being developed.

However, a UB molecular biologist has discovered that, in contrast to its action in rheumatoid arthritis(RA), IL-17 actually protects bone in the oral cavity from infectious pathogens such as Porphyromonas gingivalis, a bacterium that plays a major role in most periodontal disease in humans.

The research findings appear in the current (May) issue of the journal Blood.

Sarah L. Gaffen, Ph.D., associate professor of oral biology in the UB School of Dental Medicine and associate professor of microbiology and immunology in the UB School of Medicine and Biomedical Sciences, is senior author. Jeffrey J. Yu, a medical student and doctoral candidate who is a researcher working in Gaffen's lab, is first author.

Gaffen and colleagues conducted the research in mice bred to have no receptors for IL-17. Other researchers had shown previously, using rats and mice as animal models, that blocking the receptor for IL-17 could be an effective therapy for RA and possibly for other autoimmune diseases such as multiple sclerosis, colitis, psoriasis and lupus.

The effects of an IL-17 deficiency in periodontal disease, however, were unknown, so Gaffen's lab set out to investigate.

"I predicted these mice without the IL-17 receptor were going to be protected from periodontal bone loss, just like they're protected from arthritic bone loss," Gaffen said. "In fact, we got the opposite result. The mice without IL-17 were much more susceptible to bone loss caused by periodontal disease, compared to normal mice.

"What's the difference between an autoimmune disease like RA and periodontal disease? Periodontal disease is an infectious disease, and as with most infectious diseases, white blood cells of the innate immune system called neutrophils play a critical role in fighting infections. In fact, humans with neutrophil defects usually lose all their teeth by the time they are 20 due to severe periodontal disease.

"It turns out that IL-17 is really important in regulating neutrophils by causing other cells in the vicinity to recruit these infection fighters to the infection site," Gaffen said.

IL-17 is a cytokine, a protein hormone made by "T helper" cells of the immune system that stimulate immunity. Gaffen noted that until recently, immunologists believed there were only two major types of "T helper" cells -- TH1 and TH2 -- which were believed to be responsible for nearly all immune system activities.

"This paradigm underwent a sea change in 2005 with the discovery of a new type of T cell that produces IL-17, now called TH-17," she said. "We know now that almost all autoimmune diseases, at least in the mouse model, are caused by TH-17 cells. This new information has forced scientists to revise completely how they view their favorite disease. Everyone now has to rethink the causative mechanism."

Gaffen said IL-17 likely would be toxic if given systemically, so it may not be a therapeutic candidate to increase immunity. But inhibitors of IL-17 are considered important targets for drugs to treat autoimmune diseases such as RA and psoriasis.

On the down side, however, this new finding indicates that inhibiting IL-17 too much could put people taking such a drug at risk for opportunistic infections such as periodontal disease and tuberculosis, she noted.

"Developing knowledge about the molecules that contribute to host defense versus pathology is very important for gaining a fundamental understanding of the immune system," Gaffen said, "but also because the consequences of therapies that target these cytokines need to be understood."

Contributing authors, in addition to Gaffen and Yu, were Matthew J. Ruddy, Ph.D., a former graduate student in Gaffen's lab, now at the University of Chicago; Grace C. Wong, Cornelia Sfintescu and Richard Todd Evans, Ph.D., from the UB Department of Oral Biology; Pamela J. Baker, Ph.D., from Bates College, Lewiston, Maine; and Jeffrey B. Smith, M.D., from David Geffen School of Medicine, Los Angeles, Calif.

The research was supported by grants from the National Institutes of Health to Gaffen and Baker and by an oral biology training grant to Yu.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. The School of Dental Medicine and School of Medicine and Biomedical Sciences are two of five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Gaffen IL-17 Neutrophil autoimmune autoimmune diseases immune system periodontal

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>