Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic roots of bipolar disorder revealed by first genome-wide study of illness

09.05.2007
Targeting enzyme produced by a specific gene may lead to better medications

The likelihood of developing bipolar disorder depends in part on the combined, small effects of variations in many different genes in the brain, none of which is powerful enough to cause the disease by itself, a new study shows. However, targeting the enzyme produced by one of these genes could lead to development of new, more effective medications. The research was conducted by scientists at the National Institutes of Health's National Institute of Mental Health (NIMH), with others from the Universities of Heidelberg and Bonn and a number of U.S. facilities collaborating in a major project called the NIMH Genetics Initiative.

The study is the first to scan virtually all of the variations in human genes to find those associated with bipolar disorder. Results were published online May 8 in Molecular Psychiatry by Amber E. Baum, PhD, lead researcher Francis J. McMahon, MD, and colleagues.

"This is an example of how advances in genetics research feed into practical applications. This research would not have been possible a very few years ago. We now have a new molecular target scientists can investigate in their search for better medications for bipolar disorder," said NIH Director Elias A. Zerhouni, MD.

... more about:
»DGKH »Genetic »bipolar »enzyme

About 5.7 million American adults have bipolar disorder, which also is called manic-depressive illness. Symptoms include extremes in mood, from pronounced over-excitement and elation, often coupled with severe irritability, to depression. Children also may have the condition, usually in a more severe form than adults.

"We're beginning to get a foothold on the genetics of this complex brain disorder," said NIMH Director Thomas R. Insel, MD.

Most people occasionally have mood swings, but the shifts that occur in bipolar disorder, and the changes in behavior and energy level that accompany them, are sometimes disabling. Lithium and the other mood-stabilizing medications used to treat the condition help many patients.

But some people do not respond to these medications, and clinicians need more options so that they can tailor treatments to each patient. People inherit different gene variations, which may influence whether or not they respond to a given medication. Identifying and targeting these variations could help scientists develop additional medication options that take these differences into account.

One of the genes the researchers correlated with the disorder, DGKH, is active in a biochemical pathway through which lithium is thought to exert its therapeutic effects. The gene produces an enzyme (diacylglycerol kinase eta) that functions at a point closer to the root of the lithium-sensitive pathway than does the protein that lithium is thought to target. Scientists can now try to develop more effective medications by focusing on new compounds that act on the DGKH enzyme or regulate how much of the enzyme is produced. The DGKH gene is on chromosome 13.

Several other genes detected in the study produce proteins involved in this and other biochemical pathways thought to play a role in bipolar disorder. Understanding the effects that variations of these genes have on brain-cell function could lead to explanations of how they contribute to the condition and how it might be better prevented or treated.

"Treatments that target just a few of these genes or the proteins they make could yield substantial benefits for patients. Lithium is still the primary treatment for bipolar disorder, but DGKH is a promising target for new treatments that might be more effective and better tolerated," McMahon said.

The finding was enabled by recent genetics technology that allows researchers to scan, in a single experiment, thousands of genes for variations. Everyone has the same genes, but variations in them influence whether or not a person gets a specific disease. In this study, researchers compared variations found in the scans of 413 adults who had bipolar disorder with variations found in the scans of 563 healthy adults.

By pooling the genetic material of the adults with bipolar disorder, the U.S. researchers were able to scan the entire group at a small fraction of the cost of scanning each person's material individually. The genetic material of the healthy group was pooled and scanned separately, again at a fraction of the cost of individual scans. The researchers then zeroed in on the gene variations that occurred more often in the people with bipolar disorder and examined them individually.

An important issue in genetics research is that findings correlating specific genes with specific diseases in one population may not apply to other populations. This study addressed that issue by focusing on US participants of European ancestry, then repeating the study in a large group of patients in Germany. Similar outcomes were found in both populations, strengthening the validity of the results. A subsequent study is examining whether the results apply to other populations, and will look for common variations among them.

The researchers will soon make the results of their scans available, on a website, to other scientists who are pursuing this line of research.

Susan Cahill | EurekAlert!
Further information:
http://www.nimh.nih.gov/healthinformation/bipolarmenu.cfm

Further reports about: DGKH Genetic bipolar enzyme

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>