Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Influenza Epidemics Be Prevented by Voluntary Vaccination?

04.05.2007
U.S. Control Strategies May Make Flu Epidemics Worse, UCLA Study Shows

Novel mathematical modeling adds “human factor”

Regular as clockwork, the flu arrives every year. And, according to the national Centers for Disease Control and Prevention, 5 to 20 percent of the U.S. population on average will come down with it. About 36,000 people will die.

But among health experts, a bigger concern than the seasonal flu is an outright flu pandemic, such as a human strain of avian flu. And officials say it is not a question of if such a health crisis will come but when. Are we prepared? In a word, say three UCLA researchers, no.

In a report to be published in the peer-reviewed journal PLoS Computational Biology and currently available online, Sally Blower, a professor at the Semel Institute for Neuroscience and Human Behavior at UCLA, and Romulus Breban and Raffaele Vardavas, postdoctoral fellows in Blower’s research group, used novel mathematical modeling techniques to predict that current health policy — based on voluntary vaccinations — is not adequate to control severe flu epidemics and pandemics unless vaccination programs offer incentives to individuals.

According to the researchers, the severity of such a health crisis could be reduced if programs were to provide several years of free vaccinations to individuals who pay for only one year. Interestingly, however, some incentive programs could have the opposite effect. Providing free vaccinations for entire families, for example, could actually increase the frequency of severe epidemics. This is because when the head of the household makes a choice — flu shots or no flu shots — on behalf of all the other household members, there is no individual decision-making, and adaptability is decreased.

While other models have determined what proportion of the population would need to be vaccinated in order to prevent a pandemic, none of these models have shown whether this critical coverage can actually be reached. What has been missing, according to Blower, a mathematical and evolutionary biologist, is the human factor.

The human factor involves two biological characteristics, “memory and how adaptable people can be,” Blower said. “These characteristics drive human behavior.”

Blower and her group used people’s attitudes toward the seasonal flu to construct their model. With seasonal flu, protective immunity — a flu shot — lasts only one year. Thus, individuals must decide each year whether or not to participate in a vaccination program.

The model Blower’s team developed is inspired by game theory, used in economics to predict how non-communicating, selfish individuals reach a collective behavior with respect to a common dilemma by adapting to what they think are other people’s decisions. The group modeled each individual’s strategy for making yearly vaccination decisions as an adaptive process of trial and error. They tracked both individual-level decisions and population-level variables — that is, the yearly vaccine coverage level and influenza prevalence, where prevalence is defined as the proportion of the population that is infected. The individual-level model was based on the human biological attributes of memory and adaptability.

“We assume that the decision of each individual is based upon self-interest, that people wish to avoid coming down with the flu, preferably without having to vaccinate,” said Breban.

It is the adaptive decision-making by the individual, the researchers say, that may be an important and previously overlooked causal factor in driving influenza epidemiology.

“Including cognitive and personality factors into epidemic models can dramatically change our understanding of why flu epidemics occur.” said Vardavas.

The research was supported by a National Institutes of Health grant. Blower’s lab uses mathematical modeling as a health policy tool to design epidemic control strategies for a variety of infectious diseases. The focus of her research is to develop the study of infectious diseases into a predictive science. Blower’s Web site is www.semel.ucla.edu/biomedicalmodeling/index.asp.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, to improve access to mental health services, and to shape national health policy regarding neuropsychiatric disorders.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Blower’s epidemic individual psychiatric disorder vaccination

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>