Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover rare ‘gene-for-gene’ interaction that helps bacteria kill their host

04.05.2007
Scientists have discovered that a cousin of the plague bacterium uses a single gene to out-fox insect immune defences and kill its host.

In research published in the journal Proceedings of the National Academy of Science, scientists have found that Photorhabdus bacteria produce an antibiotic which inhibits the work of an enzyme that insects’ immune systems use to defend themselves from attack.

Although such so-called gene-for-gene interactions are thought to be common in diseases, very few examples of a single gene in a pathogen targeting a single gene in an animal or human host have been identified so far.

Photorhabdus is a family of bacteria that in relatively small concentrations can kill insects - between 10-100 cells of it are typically enough – but most are harmless to humans and can be used as a biological control mechanism to replace pesticide use.

The researchers, from the universities of Bath, Bristol and Exeter, all in the UK, used the large caterpillar Manduca sexta (tobacco hornworm) to study the bacteria’s so-called virulence genes.

“The beauty of this research is that we have been able to study the whole genome of the bacteria to work out how it kills its host,” said Professor Stuart Reynolds from the University of Bath.

“People studying diseases think that the kind of gene-for-gene interaction between pathogen and host that we have found is quite common, but actually rather few are known, which is why this research is so interesting.

“The immune systems of all animals, even relatively simple ones like insects, are all very similar.

“This is particularly true of the innate immune system, which is the fast-acting battery of defences that recognise and kill microbes to prevent infections from occurring.

“Some remarkable discoveries have been made using insects that have subsequently allowed important advances in understanding how the human immune system works.”

As part of their innate immune system, insects use an enzyme called phenoloxidase to produce reactive molecules that kill bacteria and then encapsulate them in a dense coat of black pigment called melanin.

The researchers found that Photorhabdus produces a special phenoloxidase inhibitor to protect itself against this particular defence.

They identified the inhibitor as a small molecule called 1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene, known as ST for short.

This molecule is also an antibiotic and Photorhabdus produces it to kill off other microbes that might grow in the corpse of the dead insect.

To test their findings, the researchers produced a mutant Photorhabdus that is unable to make ST. Without ST, the bacteria were less virulent. The researchers then used a technique known RNA interference to prevent the insects from producing the phenoloxidase enzyme. These insects were more susceptible to regular Photorhabdus bacteria.

But when the two were combined, it was found that not being able to produce ST made no difference to Photorhabdus when colonising insects unable to produce phenoloxidase.

“This is conclusive evidence for a gene-for-gene interaction between the bacterium and the insect,” said Richard ffrench-Constant (correct) of Exeter University.

“Photorhabdus is an important biocontrol organism that is used to control insect pests and reduces pesticide use, so the more we know about it, the more useful it can be.

“Insects are the major players in almost every ecosystem on the planet, so we need to know as much as we can about them.”

The research was supported through the Exploiting Genomics initiative funded by the Biotechnology & Biological Sciences Research Council (UK).

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/5/3/photorhabdus.html

Further reports about: Interaction Photorhabdus immune system insect phenoloxidase produce

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>