Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover rare ‘gene-for-gene’ interaction that helps bacteria kill their host

04.05.2007
Scientists have discovered that a cousin of the plague bacterium uses a single gene to out-fox insect immune defences and kill its host.

In research published in the journal Proceedings of the National Academy of Science, scientists have found that Photorhabdus bacteria produce an antibiotic which inhibits the work of an enzyme that insects’ immune systems use to defend themselves from attack.

Although such so-called gene-for-gene interactions are thought to be common in diseases, very few examples of a single gene in a pathogen targeting a single gene in an animal or human host have been identified so far.

Photorhabdus is a family of bacteria that in relatively small concentrations can kill insects - between 10-100 cells of it are typically enough – but most are harmless to humans and can be used as a biological control mechanism to replace pesticide use.

The researchers, from the universities of Bath, Bristol and Exeter, all in the UK, used the large caterpillar Manduca sexta (tobacco hornworm) to study the bacteria’s so-called virulence genes.

“The beauty of this research is that we have been able to study the whole genome of the bacteria to work out how it kills its host,” said Professor Stuart Reynolds from the University of Bath.

“People studying diseases think that the kind of gene-for-gene interaction between pathogen and host that we have found is quite common, but actually rather few are known, which is why this research is so interesting.

“The immune systems of all animals, even relatively simple ones like insects, are all very similar.

“This is particularly true of the innate immune system, which is the fast-acting battery of defences that recognise and kill microbes to prevent infections from occurring.

“Some remarkable discoveries have been made using insects that have subsequently allowed important advances in understanding how the human immune system works.”

As part of their innate immune system, insects use an enzyme called phenoloxidase to produce reactive molecules that kill bacteria and then encapsulate them in a dense coat of black pigment called melanin.

The researchers found that Photorhabdus produces a special phenoloxidase inhibitor to protect itself against this particular defence.

They identified the inhibitor as a small molecule called 1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene, known as ST for short.

This molecule is also an antibiotic and Photorhabdus produces it to kill off other microbes that might grow in the corpse of the dead insect.

To test their findings, the researchers produced a mutant Photorhabdus that is unable to make ST. Without ST, the bacteria were less virulent. The researchers then used a technique known RNA interference to prevent the insects from producing the phenoloxidase enzyme. These insects were more susceptible to regular Photorhabdus bacteria.

But when the two were combined, it was found that not being able to produce ST made no difference to Photorhabdus when colonising insects unable to produce phenoloxidase.

“This is conclusive evidence for a gene-for-gene interaction between the bacterium and the insect,” said Richard ffrench-Constant (correct) of Exeter University.

“Photorhabdus is an important biocontrol organism that is used to control insect pests and reduces pesticide use, so the more we know about it, the more useful it can be.

“Insects are the major players in almost every ecosystem on the planet, so we need to know as much as we can about them.”

The research was supported through the Exploiting Genomics initiative funded by the Biotechnology & Biological Sciences Research Council (UK).

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/5/3/photorhabdus.html

Further reports about: Interaction Photorhabdus immune system insect phenoloxidase produce

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>