Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles help detect a toxic metal -- mercury

30.04.2007
With gold nanoparticles, DNA and some smart chemistry as their tools, scientists at Northwestern University have developed a simple "litmus test" for mercury that eventually could be used for on-the-spot environmental monitoring of bodies of water, such as rivers, streams, lakes and oceans, to evaluate their safety as food and drinking water sources.

An article detailing the colorimetric screening technology and its success detecting mercury will be published online April 27 by Angewandte Chemie, the prestigious European journal of applied chemistry.

Methyl mercury, a neurotoxin that is particularly dangerous to young children and pregnant women, is the form of mercury people ingest when they eat contaminated fish and shellfish. Mercury is released into the air through industrial pollution, falling into bodies of water and polluting the waters in which fish and shellfish live. Bacteria in the aquatic environment then convert water-soluble mercuric ion (Hg2+) into methyl mercury, which accumulates in varying amounts in fish and shellfish.

"It is critical to detect mercury quickly, accurately and at its source," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry, professor of medicine and professor of materials science and engineering, who led the study. "Most existing detection methods require expensive complicated equipment forcing tests to take place in a lab. Our method is simpler, faster and more convenient than conventional methods, and results can be read with the naked eye at the point of use."

The researchers report that they were able to determine by simple visual inspection if solvated mercuric ion was present in each sample tested and, if so, in what amount. As an illustration of the method's selectivity, they also could differentiate mercury from other metals with similar binding mechanisms, such as cadmium and copper.

The method is also highly sensitive, capable of detecting mercuric ions at the 100 nanomolar level. "To the best of my knowledge, we have set a record for the most sensitive colorimetric sensor," said Mirkin. "A glucose meter, for example, operates at a high micromolar scale, with glucose being 100,000 times more concentrated than the mercury we are detecting."

The Northwestern method takes advantage of gold's intense color when the metal is measured on the scale of atoms. Mirkin and his team started with gold nanoparticles, each just 15 nanometers in diameter, held together by complementary strands of DNA. Because they are held together within a certain critical distance, the gold nanoparticles -- and the solution they are in -- are blue. When the solution is heated, the DNA breaks apart, and the gold nanoparticles, no longer in close proximity to each other, are now bright red.

Knowing that mercuric ion binds selectively to the bases of a thymidine-thymidine (T-T) mismatch, the researchers designed each strand of DNA, which is attached to a gold nanoparticle, to have a single thymidine-thymidine (T-T) mismatch. If mercury is present in the solution it binds tightly to the T-T mismatch site.

The key to the technology is that the blue to red color change occurs at 46 degrees Celsius if the solution has no mercury, and it occurs at a higher temperature if mercury is present.

"When mercury binds to the T-T mismatch site it is like adding some superglue -- the gold nanoparticles are now held together even more tightly," said Mirkin. "The mercury creates a stronger bond that requires a higher temperature to break apart the DNA strands."

The temperature it takes to break apart the strands, when the color changes from blue to red, also indicates how much mercury is present -- the higher the temperature, the more mercury or "super glue" that is present.

Their next step, said Mirkin, is to increase the sensitivity of the method as well as expand the scope of environmental targets. Using similar principles, the researchers have started developing a colorimetric screening method for cadmium and lead.

"This is a simple method that we can tailor easily for other metals," said Mirkin.

Charles Loebbaka | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Mirkin T-T gold nanoparticle mercuric mismatch nanoparticle

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>