Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles help detect a toxic metal -- mercury

30.04.2007
With gold nanoparticles, DNA and some smart chemistry as their tools, scientists at Northwestern University have developed a simple "litmus test" for mercury that eventually could be used for on-the-spot environmental monitoring of bodies of water, such as rivers, streams, lakes and oceans, to evaluate their safety as food and drinking water sources.

An article detailing the colorimetric screening technology and its success detecting mercury will be published online April 27 by Angewandte Chemie, the prestigious European journal of applied chemistry.

Methyl mercury, a neurotoxin that is particularly dangerous to young children and pregnant women, is the form of mercury people ingest when they eat contaminated fish and shellfish. Mercury is released into the air through industrial pollution, falling into bodies of water and polluting the waters in which fish and shellfish live. Bacteria in the aquatic environment then convert water-soluble mercuric ion (Hg2+) into methyl mercury, which accumulates in varying amounts in fish and shellfish.

"It is critical to detect mercury quickly, accurately and at its source," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry, professor of medicine and professor of materials science and engineering, who led the study. "Most existing detection methods require expensive complicated equipment forcing tests to take place in a lab. Our method is simpler, faster and more convenient than conventional methods, and results can be read with the naked eye at the point of use."

The researchers report that they were able to determine by simple visual inspection if solvated mercuric ion was present in each sample tested and, if so, in what amount. As an illustration of the method's selectivity, they also could differentiate mercury from other metals with similar binding mechanisms, such as cadmium and copper.

The method is also highly sensitive, capable of detecting mercuric ions at the 100 nanomolar level. "To the best of my knowledge, we have set a record for the most sensitive colorimetric sensor," said Mirkin. "A glucose meter, for example, operates at a high micromolar scale, with glucose being 100,000 times more concentrated than the mercury we are detecting."

The Northwestern method takes advantage of gold's intense color when the metal is measured on the scale of atoms. Mirkin and his team started with gold nanoparticles, each just 15 nanometers in diameter, held together by complementary strands of DNA. Because they are held together within a certain critical distance, the gold nanoparticles -- and the solution they are in -- are blue. When the solution is heated, the DNA breaks apart, and the gold nanoparticles, no longer in close proximity to each other, are now bright red.

Knowing that mercuric ion binds selectively to the bases of a thymidine-thymidine (T-T) mismatch, the researchers designed each strand of DNA, which is attached to a gold nanoparticle, to have a single thymidine-thymidine (T-T) mismatch. If mercury is present in the solution it binds tightly to the T-T mismatch site.

The key to the technology is that the blue to red color change occurs at 46 degrees Celsius if the solution has no mercury, and it occurs at a higher temperature if mercury is present.

"When mercury binds to the T-T mismatch site it is like adding some superglue -- the gold nanoparticles are now held together even more tightly," said Mirkin. "The mercury creates a stronger bond that requires a higher temperature to break apart the DNA strands."

The temperature it takes to break apart the strands, when the color changes from blue to red, also indicates how much mercury is present -- the higher the temperature, the more mercury or "super glue" that is present.

Their next step, said Mirkin, is to increase the sensitivity of the method as well as expand the scope of environmental targets. Using similar principles, the researchers have started developing a colorimetric screening method for cadmium and lead.

"This is a simple method that we can tailor easily for other metals," said Mirkin.

Charles Loebbaka | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Mirkin T-T gold nanoparticle mercuric mismatch nanoparticle

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>