Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene analysis might explain ethnic differences in sensitivity to chemotherapy in lung cancer

25.04.2007
Analysis of three genetic mechanisms that cause non-small cell lung cancer might explain why East Asians respond better than other ethnic groups to a certain type of chemotherapy, a team led by UT Southwestern Medical Center researchers has found.

This type of analysis might become useful in tailoring cancer treatments to individual patients, the researchers said.

"Genetic differences may help explain why so many Asian women who never smoked develop lung cancer," said Dr. Adi Gazdar, professor of pathology at UT Southwestern and senior author of a study appearing online today in Public Library of Science Medicine.

The researchers focused on a protein called the epidermal growth factor receptor, or EGFR, which lies on a cell’s surface and is involved in controlling many processes. Excessive amounts of EGFR are known to be involved in several types of cancer, including more than half of lung cancers. Several drugs that interfere with EGFR are used as chemotherapeutic agents.

Three inherited alterations, known as polymorphisms, in the gene that codes for EGFR can cause cells to make abnormally high levels of the protein, Dr. Gazdar said. One polymorphism shortens a portion of the gene, while two other abnormalities involve variations in the genetic "alphabet," or sequences of chemical building blocks that make up the gene.

Increased levels of EGFR also can be caused by spontaneous mutations in the gene, or by an effect in tumor cells that increases the number of copies of genes coding for EGFR.

In the current study, the researchers compared the genes of 250 healthy people of various ethnicities with 556 samples of benign and cancerous lung tumors. They found that the three inherited polymorphisms were less common in healthy people from Japan and Taiwan than in healthy people of European, African or Mexican descent.

This suggests that this population normally makes less EGFR protein than people from other ethnic groups, Dr. Gazdar said.

This was true whether the East Asians lived in Asia or in the United States, indicating that it was an intrinsic genetic trait and not one that depended on diet or lifestyle, Dr. Gazdar said.

East Asians who had developed lung cancer, however, were more likely than those of other ethnicities to have the polymorphism that involved shortening part of the gene, an alteration that causes the amount of EGFR to increase.

East Asians with lung cancer also tended to have several effects occur on a single chromosome: the polymorphism that involves shortening of the gene, a spontaneous mutation that increases EGFR levels, and increased copies of the gene caused by the tumors, he said.

"They’re all occurring together on a single chromosome, which results in a greatly increased amount of EGFR," he said. "The predicted end result would be a great increase in EGFR protein production in the affected cells, driving them toward cancer."

These findings might explain why East Asians are known to respond better than other ethnic groups to a type of chemotherapy that inhibits EGFR activity, Dr. Gazdar said.

"Cancer cells become addicted to EGFR," he said, so these cells are much more susceptible to the cancer-killing effect of EGFR inhibitors.

This type of analysis of cancer genes might be helpful for other types of cancer and other ethnic groups, Dr. Gazdar said, possibly explaining both the different manifestations of the disease seen among ethnic groups and leading the way to matching a specific treatment to the patient.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

Further reports about: EGFR Gazdar Polymorphism chemotherapy ethnic ethnic groups

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>