Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find hepatitis A and hepatitis C attack same protein to block immune defenses

20.04.2007
Despite the fact that they both infect the liver, the hepatitis A and hepatitis C viruses actually have very little in common. The two are far apart genetically, are transmitted differently, and produce very different diseases.

Hepatitis A spreads through the consumption of fecal particles from an infected person (in pollution-contaminated food or water, for example), but hepatitis C is generally transmitted only by direct contact with infected blood. Hepatitis A produces fever, nausea and abdominal pain that can last for weeks, but rarely lead to death; hepatitis C, by contrast, often spends decades quietly damaging the liver, until a victim’s only hope for survival is an organ transplant.

According to researchers at the University of Texas Medical Branch at Galveston (UTMB), though, these two otherwise unrelated liver viruses have one important thing in common: a trick for avoiding destruction by the immune system. Both dodge immune attacks by attacking the same protein — an essential link in a chain of molecular signals that triggers antiviral responses.

"With 30,000-plus proteins in the cell, it’s really remarkable that these two very different viruses have chosen to strike at the same one," said Dr. Stanley Lemon, director of UTMB’s Institute for Human Infections and Immunity and National Institutes of Health-funded Hepatitis C Research Center. Lemon is senior author of a paper on the research appearing online this week in the Proceedings of the National Academy of Sciences. "This identifies the protein — called MAVS, for mitochondrial antiviral signaling protein — as extremely important for the survival of any virus in the liver."

... more about:
»Hepatitis »MAVS »Protein

MAVS proteins project from tiny structures called mitochondria, which are found in large numbers in each liver cell. When specialized receptor molecules detect viruses in the cell, they dock with the MAVS proteins, thereby triggering a sequence of signals ending with the production of interferon beta— a potent inhibitor of virus replication. Recent research has shown that hepatitis C generates a protein called NS3/4A that chops up MAVS, interfering with immune signaling and possibly providing the cover the virus needs to survive so long in the liver. Now, Lemon and his group have demonstrated that hepatitis A does the same thing with a different protein, known as 3ABC.

"Hepatitis A never manages to establish a long-term infection like hepatitis C even though it also destroys MAVS," Lemon said. "This suggests that the degradation of this cell protein is not the main reason that hepatitis C becomes persistent. These results thus provide a new perspective on the chronicity of hepatitis C, which is a highly relevant virus clinically."

Hepatitis C has received far more research attention than hepatitis A in recent years, according to Lemon, largely because of hepatitis C’s chronic nature and the lack of a vaccine against it. But while better sanitation has driven a decline in hepatitis A cases in the United States, Lemon said, "It’s a significant risk for many people traveling overseas, because they fail to receive the vaccine." Hepatitis A has also been the cause of large food-borne outbreaks in the U.S. in recent years, including one in Pennsylvania that caused three deaths in otherwise healthy adults.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: Hepatitis MAVS Protein

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>