Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find hepatitis A and hepatitis C attack same protein to block immune defenses

20.04.2007
Despite the fact that they both infect the liver, the hepatitis A and hepatitis C viruses actually have very little in common. The two are far apart genetically, are transmitted differently, and produce very different diseases.

Hepatitis A spreads through the consumption of fecal particles from an infected person (in pollution-contaminated food or water, for example), but hepatitis C is generally transmitted only by direct contact with infected blood. Hepatitis A produces fever, nausea and abdominal pain that can last for weeks, but rarely lead to death; hepatitis C, by contrast, often spends decades quietly damaging the liver, until a victim’s only hope for survival is an organ transplant.

According to researchers at the University of Texas Medical Branch at Galveston (UTMB), though, these two otherwise unrelated liver viruses have one important thing in common: a trick for avoiding destruction by the immune system. Both dodge immune attacks by attacking the same protein — an essential link in a chain of molecular signals that triggers antiviral responses.

"With 30,000-plus proteins in the cell, it’s really remarkable that these two very different viruses have chosen to strike at the same one," said Dr. Stanley Lemon, director of UTMB’s Institute for Human Infections and Immunity and National Institutes of Health-funded Hepatitis C Research Center. Lemon is senior author of a paper on the research appearing online this week in the Proceedings of the National Academy of Sciences. "This identifies the protein — called MAVS, for mitochondrial antiviral signaling protein — as extremely important for the survival of any virus in the liver."

... more about:
»Hepatitis »MAVS »Protein

MAVS proteins project from tiny structures called mitochondria, which are found in large numbers in each liver cell. When specialized receptor molecules detect viruses in the cell, they dock with the MAVS proteins, thereby triggering a sequence of signals ending with the production of interferon beta— a potent inhibitor of virus replication. Recent research has shown that hepatitis C generates a protein called NS3/4A that chops up MAVS, interfering with immune signaling and possibly providing the cover the virus needs to survive so long in the liver. Now, Lemon and his group have demonstrated that hepatitis A does the same thing with a different protein, known as 3ABC.

"Hepatitis A never manages to establish a long-term infection like hepatitis C even though it also destroys MAVS," Lemon said. "This suggests that the degradation of this cell protein is not the main reason that hepatitis C becomes persistent. These results thus provide a new perspective on the chronicity of hepatitis C, which is a highly relevant virus clinically."

Hepatitis C has received far more research attention than hepatitis A in recent years, according to Lemon, largely because of hepatitis C’s chronic nature and the lack of a vaccine against it. But while better sanitation has driven a decline in hepatitis A cases in the United States, Lemon said, "It’s a significant risk for many people traveling overseas, because they fail to receive the vaccine." Hepatitis A has also been the cause of large food-borne outbreaks in the U.S. in recent years, including one in Pennsylvania that caused three deaths in otherwise healthy adults.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: Hepatitis MAVS Protein

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>