Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient amphibians evolved a bite before migrating to dry land

Junctures of skull bones suggest terrestrial feeding habits preceded terrestrial habitats

Ancient aquatic amphibians developed the ability to feed on land before completing the transition to terrestrial life, researchers from Harvard University report this week in the Proceedings of the National Academy of Sciences.

Their work is based on analysis of the skulls of the first amphibians, which arose 375 million years ago, and their fish ancestors. The shapes of the junctions between adjacent skull bones -- termed "sutures" -- in the tops of these fish and amphibian skulls reveal how these extinct animals captured prey, say authors Molly J. Markey and Charles R. Marshall.

"Based on experimental data obtained from living fish, we found that the shapes of sutures in the skull roof indicate whether a fish captures its prey by sucking it into the mouth -- like a goldfish -- or by biting on it directly, like a crocodile," says Markey, a postdoctoral researcher and lecturer in Harvard's Department of Earth and Planetary Sciences. "A biting or chewing motion would result in a faint pushing together of the frontal bones in the skull, while a sucking motion would pull those bones ever so slightly apart. By comparing the skull roofs of living fish to those of early amphibians and their fishy ancestors, we were able to determine whether the fossil species fed by suction or by biting."

... more about:
»Acanthostega »Markey »amphibian »aquatic »terrestrial

Using this approach, Markey and Marshall found that in one key transitional species, the aquatic amphibian Acanthostega, the shapes of the junctions between adjacent skull bones are consistent with biting prey. This finding, the scientists say, suggests that the water-dwelling Acanthostega may have bitten on prey at or near the water's edge.

"Going from the aquatic realm to land involved a series of adaptations to facilitate changes in locomotion, respiration, reproduction, sensation, and feeding," Markey says. "In water, suction is an efficient method of feeding, but it does not work in the much less dense air environment. Early terrestrial inhabitants would thus have had to develop the means for chomping prey."

Markey and Marshall first measured the skull roof sutures, those areas where the bones of the skull roof meet, in the living fish Polypterus as it fed. They then analyzed the same cranial junctions in several fossils -- the early amphibian Acanthostega, its fishy ancestor Eusthenopteron, and the extinct terrestrial amphibian Phonerpeton -- to determine how these bones may have moved relative to each other during feeding. By analyzing the tiny forces that the sutures experienced during feeding, such as tension or compression, the researchers could determine how the skull roof likely deformed as the animals ate.

Living fish exhibit an incredible array of tooth and jaw shapes, suggesting that, ironically, direct analysis of fossil jaws would be a less precise means of determining the feeding methods of extinct species, Markey says.

"Analysis of the sutures of the early amphibian species Acanthostega revealed that, while it had many adaptations to an aquatic lifestyle, it was more likely a biter than a sucker," Markey says. "The analysis suggests that amphibians evolved a bite before emerging onto land as fully terrestrial animals."

Steve Bradt | EurekAlert!
Further information:

Further reports about: Acanthostega Markey amphibian aquatic terrestrial

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>