Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find major susceptibility gene for Crohn's disease

17.04.2007
Discoveries reveal new genetic risk factors for the millions of people with inflammatory bowel diseases

A consortium of Canadian and American researchers report in Nature Genetics the results from a search of the entire human genome for genetic risk factors leading to the development of Crohn's disease. Specifically, using a novel approach, the authors identified that the PHOX2B, NCF4 and ATG16L1 genes constitute genetic risk factors for Crohn's disease. In addition, their study identified two regions of the genome where genetic risk factors are located but no known genes were implicated – further work will be necessary to identify the causal genes in these regions.

More than 150,000 Canadians suffer from Crohn's disease and ulcerative colitis, known collectively as inflammatory bowel disease (IBD). The study's authors represent the NIDDK IBD Genetics Consortium, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health in the United States. The Consortium's member institutions include the University of Toronto, the Université de Montréal, the Cedars-Sinai Medical Center in Los Angeles, the University of Chicago, the Johns Hopkins University, the University of Pittsburgh, and Yale University.

Since IBD tends to run in families and is more frequent in certain ethnic populations, especially Ashkenazi Jews, scientists have long suspected a significant genetic component. Although previous genetic studies found a link between Crohn's disease and mutations in a gene known as CARD15, those mutations alone are not considered to account for the entire genetic component of disease. To identify additional genes that are associated with IBD, the international team of researchers scanned the genome—all of 22,000 or so genes— by testing more than 300,000 single nucleotide polymorphisms, or SNPs, in people with Crohn's disease and in healthy controls. The comparison of these SNPs (common genetic variants) between patient and control groups identified multiple SNPs that were strongly associated with Crohn's disease. These findings were then tested in two additional sets of patients and healthy controls in order to confirm their results.

... more about:
»ATG16L1 »Crohn' »IBD »SNP »risk factor

According to the study co-author, Dr. Mark Silverberg, Assistant Professor of Medicine and Surgery at the University of Toronto and Staff Gastroenterologist at Mount Sinai Hospital in Toronto, the findings highlight numerous biological pathways not previously thought to play a role in Crohn's disease. "The identification of the PHOX2B gene in this study, for example, may implicate a role for neuroendocrine cells of the intestinal epithelium as having a role to play in Crohn's disease. In addition, the identification of the NCF4 gene indicates that altered reactive oxygen species (ROS) production, important in the generation of an effective anti-microbial response, may lead to increased risk to developing Crohn's disease."

The fact that the authors also found strong association of the ATG16L1 gene provides further evidence that an individual's response to microbes has an influence on susceptibility to Crohn's disease. Specifically, in addition to demonstrating its association to disease, these authors have shown that ATG16L1 is essential for the normal autophagic process used to degrade worn-out cellular components and help eliminate some pathogenic bacteria.

"We propose that genetic variation in the ATG16L1 gene leads to alterations in how the body uses autophagy and therefore may result in increased persistence of both cellular and bacterial components, leading to inappropriate immune activation and increased risk of Crohn's disease," says co-author Dr. Hillary Steinhart, Head of the Combined Division of Gastroenterology at Mount Sinai Hospital / University Health Network.

The findings reported in this study are expected to not only improve on the biological understanding of disease but should also have a long-term impact on clinical practice.

According to Dr. Steven Brant, senior co-author and gastroenterologist at Johns Hopkins University, "the multiple genetic risk factors we've identified provide important targets for current functional studies aimed at understanding the disease and important targets for drug development to improve therapy of Crohn's disease in the future."

Dr. Stephen P. James, M.D., director of the Division of Digestive Diseases and Nutrition at the National Institutes of Health's NIDDK continued by saying that "these important discoveries not only offer new hope for better therapies for patients with Crohn's disease, they also highlight the promise of the human genome project and subsequent investments by the NIH in large scale, collaborative research projects to unravel the causes of, and hopefully better treatments for complex, enigmatic diseases."

Jodi Salem | EurekAlert!
Further information:
http://www.utoronto.ca/

Further reports about: ATG16L1 Crohn' IBD SNP risk factor

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>