Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that governs toxin production in deadly mold found

13.04.2007
For the growing number of people with diminished immune systems - cancer patients, transplant recipients, those with HIV/AIDS - infection by a ubiquitous mold known as Aspergillus fumigatus can be a death sentence.

The fungus, which is found in the soil, on plant debris and indoor air, is easily managed by the healthy immune system. But as medical advances contribute to a growing population of people whose immune systems are weakened by disease or treatment, the opportunistic fungus poses a serious risk.

Now, however, scientists may have found a master switch, an über gene, that seems to control the mold's ability to make poison. The new finding was reported today (April 12) in the journal Public Library of Science Pathogens by a team led by Nancy P. Keller, a biologist from the University of Wisconsin-Madison.

"There is a growing problem with medical fungi in the United States," says Keller, a UW-Madison professor of plant pathology and medical microbiology. "Aspergillus fumigatus is among the most important."

Like many fungi, Aspergillus fumigatus makes a variety of poisons, presumably to give the microbe a competitive advantage in the environments it inhabits. In humans with suppressed immune systems, the mold can cause a number of diseases with mortality rates of 60 percent or more.

"The infection can be treated, but not easily," Keller explains. "Once an immunocompromised individual gets any fungal disease, it's pretty hard to treat, and the treatments themselves are often toxic. There is a 60-90 percent mortality rate with invasive aspergillosis."

Thus, knowing how the fungus makes its chemical arsenal is important and opens an avenue to devising novel treatments that can disarm the pathogen before it does its dirty work.

In fungi, there are typically many genes at work making toxins and other chemical metabolites. The genes tend to be clustered in groups on the organism's genome. In Aspergillus fumigatus, there are as many as 22 such gene groupings.

How those posses of genes are triggered and governed, however, has been a mystery. But now Keller's group has found that a key gene known as LaeA controls at least half of those toxin-producing gene clusters, suggesting there may be a way to modulate the virulence of the deadly microbe.

"We now have a very good idea that (the gene) is central to the toxic nature of the fungus," Keller says.

The LaeA gene, she believes, is like a maestro, directing the mold's toxin-producing genes in an orchestrated chorus that, in the right host, can be fatal.

Knowing this, Keller explains, "suggests that if you can find a way to regulate the activity of LeaA you might have a novel target" for new therapies to treat Aspergillus fumigatus infection.

"The gene is not expressed all the time, which means there must be a signal that says 'turn me on.'"

Removing the gene from the equation, she says, may cripple the microbe's ability to infect and sicken people.

"The loss of LaeA results in a great decrease in the repertoire of secondary metabolites, which appears to impact the infection process," making the gene an ideal prospect for new ways to fight infection.

Nancy P. Keller | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Aspergillus Aspergillus fumigatus fumigatus immune system

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>