Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 proteins may play important role in nerve-cell repair

13.04.2007
Some mature brain cells can grow new extensions when the amount of three particular proteins on their surface increases, a new study shows.

The research examined three related receptor proteins, called GPR3, GPR6 and GPR12, on nerve cells in the brains of rats.

When researchers increased the amount of the three proteins, the cells grew extensions that were up to three times longer than those on nerve cells with normal levels of the proteins, and the extensions grew four to eight times faster than in control cells.

"Our findings suggest that these three proteins could be important targets for treating stroke, brain and spinal cord injuries and also neurodegenerative diseases," says principal investigator Yoshinaga Saeki of the Ohio State University Medical Center.

... more about:
»Axon »GPR12 »GPR3 »cAMP »extensions »nerve cells

The study is published in the April 6 issue of the Journal of Biological Chemistry.

Increased amounts of the proteins were associated with a significant rise in the level of an important signaling molecule inside the nerve cells called cAMP. This molecule plays a key role in regulating nerve-cell growth, differentiation and survival, and the regeneration of long parts of the cell called axons that carry the nerve impulses.

Levels of cAMP drop in mammalian nerve cells as they mature, and this is thought to explain, in part, why mature nerve cells cannot regenerate damaged axons.

"Our findings provide additional evidence that cAMP plays an important role in axon growth and suggest that these receptors are likely to play a major role in regulating cAMP production in nerve cells," says Saeki, an associate professor of neurological surgery and chief of Ohio State's Dardinger Laboratory for Neuro-oncology and Neurosciences.

In this study, first author Shigeru Tanaka, a postdoctoral fellow in Saeki's laboratory, and his colleagues used nerve cells obtained from the brain tissue of rats and mouse neuroblastoma cells growing in culture to learn more about the three proteins and their involvement in cAMP regulation.

The researchers added additional copies of the three genes to the cells to increase the levels of the proteins, and then used a laboratory technique called RNA intereference to turn off production of the proteins.

Of the three molecules, GPR3 was the most abundant in the nerve cells, while GPR12 was the most potent at stimulating growth of the nerve extensions. The study showed that blocking GPR3 greatly slows the growth of the nerve extensions. The researchers reversed this effect by restoring either GPR3 or GPR12 in the cells.

High levels of the three proteins were also linked to higher levels of cAMP, with GPR6 and GPR12 increasing the level twofold to threefold.

"Taken together," Saeki says, "our findings indicate that these three proteins improve growth of neuronal extensions even in the presence of inhibitory molecules, and we are very keen to find out whether the approach can be translated in preclinical animal models of stroke or spinal cord injury."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Axon GPR12 GPR3 cAMP extensions nerve cells

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>