Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 proteins may play important role in nerve-cell repair

13.04.2007
Some mature brain cells can grow new extensions when the amount of three particular proteins on their surface increases, a new study shows.

The research examined three related receptor proteins, called GPR3, GPR6 and GPR12, on nerve cells in the brains of rats.

When researchers increased the amount of the three proteins, the cells grew extensions that were up to three times longer than those on nerve cells with normal levels of the proteins, and the extensions grew four to eight times faster than in control cells.

"Our findings suggest that these three proteins could be important targets for treating stroke, brain and spinal cord injuries and also neurodegenerative diseases," says principal investigator Yoshinaga Saeki of the Ohio State University Medical Center.

... more about:
»Axon »GPR12 »GPR3 »cAMP »extensions »nerve cells

The study is published in the April 6 issue of the Journal of Biological Chemistry.

Increased amounts of the proteins were associated with a significant rise in the level of an important signaling molecule inside the nerve cells called cAMP. This molecule plays a key role in regulating nerve-cell growth, differentiation and survival, and the regeneration of long parts of the cell called axons that carry the nerve impulses.

Levels of cAMP drop in mammalian nerve cells as they mature, and this is thought to explain, in part, why mature nerve cells cannot regenerate damaged axons.

"Our findings provide additional evidence that cAMP plays an important role in axon growth and suggest that these receptors are likely to play a major role in regulating cAMP production in nerve cells," says Saeki, an associate professor of neurological surgery and chief of Ohio State's Dardinger Laboratory for Neuro-oncology and Neurosciences.

In this study, first author Shigeru Tanaka, a postdoctoral fellow in Saeki's laboratory, and his colleagues used nerve cells obtained from the brain tissue of rats and mouse neuroblastoma cells growing in culture to learn more about the three proteins and their involvement in cAMP regulation.

The researchers added additional copies of the three genes to the cells to increase the levels of the proteins, and then used a laboratory technique called RNA intereference to turn off production of the proteins.

Of the three molecules, GPR3 was the most abundant in the nerve cells, while GPR12 was the most potent at stimulating growth of the nerve extensions. The study showed that blocking GPR3 greatly slows the growth of the nerve extensions. The researchers reversed this effect by restoring either GPR3 or GPR12 in the cells.

High levels of the three proteins were also linked to higher levels of cAMP, with GPR6 and GPR12 increasing the level twofold to threefold.

"Taken together," Saeki says, "our findings indicate that these three proteins improve growth of neuronal extensions even in the presence of inhibitory molecules, and we are very keen to find out whether the approach can be translated in preclinical animal models of stroke or spinal cord injury."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Axon GPR12 GPR3 cAMP extensions nerve cells

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>