Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 proteins may play important role in nerve-cell repair

13.04.2007
Some mature brain cells can grow new extensions when the amount of three particular proteins on their surface increases, a new study shows.

The research examined three related receptor proteins, called GPR3, GPR6 and GPR12, on nerve cells in the brains of rats.

When researchers increased the amount of the three proteins, the cells grew extensions that were up to three times longer than those on nerve cells with normal levels of the proteins, and the extensions grew four to eight times faster than in control cells.

"Our findings suggest that these three proteins could be important targets for treating stroke, brain and spinal cord injuries and also neurodegenerative diseases," says principal investigator Yoshinaga Saeki of the Ohio State University Medical Center.

... more about:
»Axon »GPR12 »GPR3 »cAMP »extensions »nerve cells

The study is published in the April 6 issue of the Journal of Biological Chemistry.

Increased amounts of the proteins were associated with a significant rise in the level of an important signaling molecule inside the nerve cells called cAMP. This molecule plays a key role in regulating nerve-cell growth, differentiation and survival, and the regeneration of long parts of the cell called axons that carry the nerve impulses.

Levels of cAMP drop in mammalian nerve cells as they mature, and this is thought to explain, in part, why mature nerve cells cannot regenerate damaged axons.

"Our findings provide additional evidence that cAMP plays an important role in axon growth and suggest that these receptors are likely to play a major role in regulating cAMP production in nerve cells," says Saeki, an associate professor of neurological surgery and chief of Ohio State's Dardinger Laboratory for Neuro-oncology and Neurosciences.

In this study, first author Shigeru Tanaka, a postdoctoral fellow in Saeki's laboratory, and his colleagues used nerve cells obtained from the brain tissue of rats and mouse neuroblastoma cells growing in culture to learn more about the three proteins and their involvement in cAMP regulation.

The researchers added additional copies of the three genes to the cells to increase the levels of the proteins, and then used a laboratory technique called RNA intereference to turn off production of the proteins.

Of the three molecules, GPR3 was the most abundant in the nerve cells, while GPR12 was the most potent at stimulating growth of the nerve extensions. The study showed that blocking GPR3 greatly slows the growth of the nerve extensions. The researchers reversed this effect by restoring either GPR3 or GPR12 in the cells.

High levels of the three proteins were also linked to higher levels of cAMP, with GPR6 and GPR12 increasing the level twofold to threefold.

"Taken together," Saeki says, "our findings indicate that these three proteins improve growth of neuronal extensions even in the presence of inhibitory molecules, and we are very keen to find out whether the approach can be translated in preclinical animal models of stroke or spinal cord injury."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Axon GPR12 GPR3 cAMP extensions nerve cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>