Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA predicts nongreen plants on other planets

13.04.2007
NASA scientists believe they have found a way to predict the color of plants on planets in other solar systems.

Green, yellow or even red-dominant plants may live on extra-solar planets, according to scientists whose two scientific papers appear in the March issue of the journal, Astrobiology. The scientists studied light absorbed and reflected by organisms on Earth, and determined that if astronomers were to look at the light given off by planets circling distant stars, they might predict that some planets have mostly non-green plants.

"We can identify the strongest candidate wavelengths of light for the dominant color of photosynthesis on another planet," said Nancy Kiang, lead author of the study and a biometeorologist at NASA's Goddard Institute for Space Studies, New York. Kiang worked with a team of scientists from the Virtual Planetary Laboratory (VPL) at the California Institute of Technology, Pasadena, Calif. VPL was formed as part of the NASA Astrobiology Institute (NAI), based at the NASA Ames Research Center in California’s Silicon Valley.

"This work broadens our understanding of how life may be detected on Earth-like planets around other stars, while simultaneously improving our understanding of life on Earth," said Carl Pilcher, director of the NAI at NASA Ames. "This approach -- studying Earth life to guide our search for life on other worlds -- is the essence of astrobiology."

Kiang and her colleagues calculated what the stellar light would look like at the surface of Earth-like planets whose atmospheric chemistry is consistent with the different types of stars they orbit. By looking at the changes in that light through different atmospheres, researchers identified colors that would be most favorable for photosynthesis on other planets.

This new research narrows the range of colors that scientists would expect to see when photosynthesis is occurring on extrasolar planets. Each planet will have different dominant colors for photosynthesis, based on the planet’s atmosphere where the most light reaches the planet’s surface. The dominant photosynthesis might even be in the infrared.

"This work will help guide designs for future space telescopes that will study extrasolar planets, to see if they are habitable, and could have alien plants," said Victoria Meadows, an astronomer who heads the VPL. The VPL team is using a suite of computer models to simulate Earth-size planets and their light spectra as space telescopes would see them. The scientists' goal is to discover the likely range of habitable planets around other stars and to find out how these planets might appear to future planet-finding missions.

On Earth, Kiang and colleagues surveyed light absorbed and reflected by plants and some bacteria during photosynthesis, a process by which plants use energy from sunlight to produce sugar. Organisms that live in different light environments absorb the light colors that are most available. For example, there is a type of bacteria that inhabit murky waters where there is little visible light, and so they use infrared radiation during photosynthesis.

Scientists have long known that the chlorophyll in most plants on Earth absorbs blue and red light and less green light. Therefore, chlorophyll appears green. Although some green color is absorbed, it is less than the other colors. Previously, scientists thought plants are not efficient as they could be, because they do not use more green light.

According to scientists, the Sun has a specific distribution of colors of light, emitting more of some colors than others. Gases in Earth's air also filter sunlight, absorbing different colors. As a result, more red light particles reach Earth's surface than blue or green light particles, so plants use red light for photosynthesis. There is plenty of light for land plants, so they do not need to use extra green light. But not all stars have the same distribution of light colors as our Sun. Study scientists say they now realize that photosynthesis on extrasolar planets will not necessarily look the same as on Earth.

"It makes one appreciate how life on Earth is so intimately adapted to the special qualities of our home planet and Sun," said Kiang.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Earth's magnetic field Earth-like planet Kiang NASA VPL photosynthesis

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>