Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major genetic study identifies clearest link yet to obesity risk

13.04.2007
Scientists have identified the most clear genetic link yet to obesity in the general population as part of a major study of diseases funded by the Wellcome Trust, the UK's largest medical research charity. People with two copies of a particular gene variant have a 70% higher risk of being obese than those with no copies.

Obesity is a major cause of disease, associated with an increased risk of type 2 diabetes, heart disease and cancer. It is typically measured using body mass index (BMI). As a result of reduced physical activity and increased food consumption, the prevalence of obesity is increasing worldwide. According to the 2001 Health Survey for England, over a fifth of males and a similar proportion of females aged 16 and over in England were classified as obese. Half of men and a third of women were classified as overweight.

Scientists from the Peninsula Medical School, Exeter, and the University of Oxford first identified a genetic link to obesity through a genome-wide study of 2,000 people with type 2 diabetes and 3,000 controls. This study was part of the Wellcome Trust Case Control Consortium, one of the biggest projects ever undertaken to identify the genetic variations that may predispose people to or protect them from major diseases. Through this genome-wide study, the researchers identified a strong association between an increase in BMI and a variation, or "allele", of the gene FTO. Their findings are published online today in the journal Science.

The researchers then tested a further 37,000 samples for this gene from Bristol, Dundee and Exeter as well as a number of other regions in the UK and Finland.

... more about:
»BMI »FTO »allele »obese »obesity »type 2 diabetes

The study found that people carrying one copy of the FTO allele have a 30% increased risk of being obese compared to a person with no copies. However, a person carrying two copies of the allele has a 70% increased risk of being obese, being on average 3kg heavier than a similar person with no copies. Amongst white Europeans, approximately one in six people carry both copies of the allele.

"As a nation, we are eating more but doing less exercise, and so the average weight is increasing, but within the population some people seem to put on more weight than others," explains Professor Andrew Hattersley from the Peninsula Medical School. "Our findings suggest a possible answer to someone who might ask 'I eat the same and do as much exercise as my friend next door, so why am I fatter?' There is clearly a component to obesity that is genetic."

The researchers currently do not know why people with copies of the FTO allele have an increased BMI and rates of obesity.

"Even though we have yet to fully understand the role played by the FTO gene in obesity, our findings are a source of great excitement," says Professor Mark McCarthy from the University of Oxford. "By identifying this genetic link, it should be possible to improve our understanding of why some people are more obese, with all the associated implications such as increased risk of diabetes and heart disease. New scientific insights will hopefully pave the way for us to explore novel ways of treating this condition."

The findings were welcomed by Dr Mark Walport, Director of the Wellcome Trust.

"This is an exciting piece of work that illustrates why it was so important to sequence the human genome," says Dr Walport. "Obesity is one of the most challenging problems for public health in the UK. The discovery of a gene that influences the development of obesity in the general population provides a new tool for understanding how some people appear to gain weight more easily than others. This discovery, along with further results expected from the Wellcome Trust Case Control Consortium later this year, will open up a wealth of new avenues to understand and treat common diseases."

The FTO gene was first discovered whilst studying the DNA of a cohort of patients with type 2 diabetes. The risk of developing type 2 diabetes increases significantly for obese people. Through its effect on BMI, having one copy of the FTO allele increases the risk of developing type 2 diabetes by 25%, having two by 50%.

"We welcome this result, which holds promise for tackling rising levels of obesity and the associated risk of developing type 2 diabetes," says Professor Simon Howell, Chair of Diabetes UK, which funded the original collection of samples from people with diabetes. "The discovery has been possible not only because of exemplary team work of scientists from a large number of institutions but also because of the cooperation of the 5,000 diabetes patients and 37,000 people without diabetes who gave blood samples for the study."

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: BMI FTO allele obese obesity type 2 diabetes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>