Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geochemists Take Calculi Off The Heart

13.04.2007
Researchers from three Novosibirsk Institutes have found out where heart calculi come from. Generally, geochemists’ task is to investigate how apatite sediments – main source of phosphorus for mankind – are formed in nature.

However, they assumed that similar processes take place under the influence of microbes in living tissues, for example, in the heart. Likewise renal and intrahepatic calculi, heart calculi consist of mineral casings, by which bacteria colonies get covered, the bacteria often residing in the endocardium and on the mitral valves’ surface, but making their presence known only occasionally via infectious inflammation - endocarditis.

Bacteria live in the blood and precipitate apatite from it. Cardiolytes are formed - coral-like calculi weighting from 1 to 4 grams penetrated by organic films. They have to be surgically extracted out of the heart. Cardiolytes’ microstructure gave away their bacterial origin – they consist of the smallest corpuscles - globules, their size being less than one thousandth portion of a millimeter, and such constructions are normally built by bacteria. Globules inosculate, thus forming clusters, spheres or drusen in the shape of a flower.

A little later, the researchers managed to catch the builders. They turned out to be bacteria of the coccoid (spheric) shape connected by polysacharide threads. The researchers do not exclude the possibility that these are the very enterococci and streptococci, which cause infective endocarditis. At least, a lot of patients who had survived it, needed to remove calculi from the heart later, as physicians rarely manage to fully extirpate parasites. Endocarditis is over, but the survived microbes recover from antibiotics and go on living.

... more about:
»Organic »apatite »calculi »cardiolytes »phosphorus

The researchers examined via the electron microscope how cardiolytes are formed. The cardiolytes were withdrawn during the heart operation in several clinics of Siberia. Natural samples were brought for comparison from the European part of Russia, Morocco and Columbia. The researchers produced a series of preparations from different sections of “calculi” - 2 by 2 millimeters. It has turned out that both natural apatites of organic origin and cardiolytes consist of similar globular formations. The globular structure is in general the indication of biogenic origin of minerals – for example, natural carbonates are arranged in the same way. In cardiolytes, globules, corresponding in shape to the organisms that constructed them, are sorted out by size – small ones are placed along the edges of the colony, while big ones are in the middle. This indicated to gradual drusen “maturing” in the environment saturated by organic matter that contained phosphorus and calcium.

Natural and “human” apatites differ in their chemical composition. The former are better crystallized, they contain less organic matter. It is not surprising because stones are million years old, and calculi are several years old. The source of calcium and phosphorus for “stone mason” bacteria are organophosphorus molecules, which are numerous both in blood and in natural water. Their cells artificially concentrate phosphorus and calcium around them, and there is no big difference from geochemistry perspective between the cardiac muscle and the bottom layer of water saturated with organic matter. Thus, the apatite in the cardiac muscle represents the initial stage of the process, and natural minerals constitute the final product.

Ability for biomineralization within the organism is closely connected with blood composition. Several years ago, biologists managed to reproduce microbe biofouling by phosphorite casings in the in vitro culture. Thus, for example, cyanobacteria are capable to get covered by the mineral within several hours. Having made sure that various “calculi” in the organism are built by bacteria, the search can be started as regards to means of impeding this construction.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Organic apatite calculi cardiolytes phosphorus

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>