Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geochemists Take Calculi Off The Heart

Researchers from three Novosibirsk Institutes have found out where heart calculi come from. Generally, geochemists’ task is to investigate how apatite sediments – main source of phosphorus for mankind – are formed in nature.

However, they assumed that similar processes take place under the influence of microbes in living tissues, for example, in the heart. Likewise renal and intrahepatic calculi, heart calculi consist of mineral casings, by which bacteria colonies get covered, the bacteria often residing in the endocardium and on the mitral valves’ surface, but making their presence known only occasionally via infectious inflammation - endocarditis.

Bacteria live in the blood and precipitate apatite from it. Cardiolytes are formed - coral-like calculi weighting from 1 to 4 grams penetrated by organic films. They have to be surgically extracted out of the heart. Cardiolytes’ microstructure gave away their bacterial origin – they consist of the smallest corpuscles - globules, their size being less than one thousandth portion of a millimeter, and such constructions are normally built by bacteria. Globules inosculate, thus forming clusters, spheres or drusen in the shape of a flower.

A little later, the researchers managed to catch the builders. They turned out to be bacteria of the coccoid (spheric) shape connected by polysacharide threads. The researchers do not exclude the possibility that these are the very enterococci and streptococci, which cause infective endocarditis. At least, a lot of patients who had survived it, needed to remove calculi from the heart later, as physicians rarely manage to fully extirpate parasites. Endocarditis is over, but the survived microbes recover from antibiotics and go on living.

... more about:
»Organic »apatite »calculi »cardiolytes »phosphorus

The researchers examined via the electron microscope how cardiolytes are formed. The cardiolytes were withdrawn during the heart operation in several clinics of Siberia. Natural samples were brought for comparison from the European part of Russia, Morocco and Columbia. The researchers produced a series of preparations from different sections of “calculi” - 2 by 2 millimeters. It has turned out that both natural apatites of organic origin and cardiolytes consist of similar globular formations. The globular structure is in general the indication of biogenic origin of minerals – for example, natural carbonates are arranged in the same way. In cardiolytes, globules, corresponding in shape to the organisms that constructed them, are sorted out by size – small ones are placed along the edges of the colony, while big ones are in the middle. This indicated to gradual drusen “maturing” in the environment saturated by organic matter that contained phosphorus and calcium.

Natural and “human” apatites differ in their chemical composition. The former are better crystallized, they contain less organic matter. It is not surprising because stones are million years old, and calculi are several years old. The source of calcium and phosphorus for “stone mason” bacteria are organophosphorus molecules, which are numerous both in blood and in natural water. Their cells artificially concentrate phosphorus and calcium around them, and there is no big difference from geochemistry perspective between the cardiac muscle and the bottom layer of water saturated with organic matter. Thus, the apatite in the cardiac muscle represents the initial stage of the process, and natural minerals constitute the final product.

Ability for biomineralization within the organism is closely connected with blood composition. Several years ago, biologists managed to reproduce microbe biofouling by phosphorite casings in the in vitro culture. Thus, for example, cyanobacteria are capable to get covered by the mineral within several hours. Having made sure that various “calculi” in the organism are built by bacteria, the search can be started as regards to means of impeding this construction.

Nadezda Markina | alfa
Further information:

Further reports about: Organic apatite calculi cardiolytes phosphorus

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>