Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geochemists Take Calculi Off The Heart

13.04.2007
Researchers from three Novosibirsk Institutes have found out where heart calculi come from. Generally, geochemists’ task is to investigate how apatite sediments – main source of phosphorus for mankind – are formed in nature.

However, they assumed that similar processes take place under the influence of microbes in living tissues, for example, in the heart. Likewise renal and intrahepatic calculi, heart calculi consist of mineral casings, by which bacteria colonies get covered, the bacteria often residing in the endocardium and on the mitral valves’ surface, but making their presence known only occasionally via infectious inflammation - endocarditis.

Bacteria live in the blood and precipitate apatite from it. Cardiolytes are formed - coral-like calculi weighting from 1 to 4 grams penetrated by organic films. They have to be surgically extracted out of the heart. Cardiolytes’ microstructure gave away their bacterial origin – they consist of the smallest corpuscles - globules, their size being less than one thousandth portion of a millimeter, and such constructions are normally built by bacteria. Globules inosculate, thus forming clusters, spheres or drusen in the shape of a flower.

A little later, the researchers managed to catch the builders. They turned out to be bacteria of the coccoid (spheric) shape connected by polysacharide threads. The researchers do not exclude the possibility that these are the very enterococci and streptococci, which cause infective endocarditis. At least, a lot of patients who had survived it, needed to remove calculi from the heart later, as physicians rarely manage to fully extirpate parasites. Endocarditis is over, but the survived microbes recover from antibiotics and go on living.

... more about:
»Organic »apatite »calculi »cardiolytes »phosphorus

The researchers examined via the electron microscope how cardiolytes are formed. The cardiolytes were withdrawn during the heart operation in several clinics of Siberia. Natural samples were brought for comparison from the European part of Russia, Morocco and Columbia. The researchers produced a series of preparations from different sections of “calculi” - 2 by 2 millimeters. It has turned out that both natural apatites of organic origin and cardiolytes consist of similar globular formations. The globular structure is in general the indication of biogenic origin of minerals – for example, natural carbonates are arranged in the same way. In cardiolytes, globules, corresponding in shape to the organisms that constructed them, are sorted out by size – small ones are placed along the edges of the colony, while big ones are in the middle. This indicated to gradual drusen “maturing” in the environment saturated by organic matter that contained phosphorus and calcium.

Natural and “human” apatites differ in their chemical composition. The former are better crystallized, they contain less organic matter. It is not surprising because stones are million years old, and calculi are several years old. The source of calcium and phosphorus for “stone mason” bacteria are organophosphorus molecules, which are numerous both in blood and in natural water. Their cells artificially concentrate phosphorus and calcium around them, and there is no big difference from geochemistry perspective between the cardiac muscle and the bottom layer of water saturated with organic matter. Thus, the apatite in the cardiac muscle represents the initial stage of the process, and natural minerals constitute the final product.

Ability for biomineralization within the organism is closely connected with blood composition. Several years ago, biologists managed to reproduce microbe biofouling by phosphorite casings in the in vitro culture. Thus, for example, cyanobacteria are capable to get covered by the mineral within several hours. Having made sure that various “calculi” in the organism are built by bacteria, the search can be started as regards to means of impeding this construction.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Organic apatite calculi cardiolytes phosphorus

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>