Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geochemists Take Calculi Off The Heart

13.04.2007
Researchers from three Novosibirsk Institutes have found out where heart calculi come from. Generally, geochemists’ task is to investigate how apatite sediments – main source of phosphorus for mankind – are formed in nature.

However, they assumed that similar processes take place under the influence of microbes in living tissues, for example, in the heart. Likewise renal and intrahepatic calculi, heart calculi consist of mineral casings, by which bacteria colonies get covered, the bacteria often residing in the endocardium and on the mitral valves’ surface, but making their presence known only occasionally via infectious inflammation - endocarditis.

Bacteria live in the blood and precipitate apatite from it. Cardiolytes are formed - coral-like calculi weighting from 1 to 4 grams penetrated by organic films. They have to be surgically extracted out of the heart. Cardiolytes’ microstructure gave away their bacterial origin – they consist of the smallest corpuscles - globules, their size being less than one thousandth portion of a millimeter, and such constructions are normally built by bacteria. Globules inosculate, thus forming clusters, spheres or drusen in the shape of a flower.

A little later, the researchers managed to catch the builders. They turned out to be bacteria of the coccoid (spheric) shape connected by polysacharide threads. The researchers do not exclude the possibility that these are the very enterococci and streptococci, which cause infective endocarditis. At least, a lot of patients who had survived it, needed to remove calculi from the heart later, as physicians rarely manage to fully extirpate parasites. Endocarditis is over, but the survived microbes recover from antibiotics and go on living.

... more about:
»Organic »apatite »calculi »cardiolytes »phosphorus

The researchers examined via the electron microscope how cardiolytes are formed. The cardiolytes were withdrawn during the heart operation in several clinics of Siberia. Natural samples were brought for comparison from the European part of Russia, Morocco and Columbia. The researchers produced a series of preparations from different sections of “calculi” - 2 by 2 millimeters. It has turned out that both natural apatites of organic origin and cardiolytes consist of similar globular formations. The globular structure is in general the indication of biogenic origin of minerals – for example, natural carbonates are arranged in the same way. In cardiolytes, globules, corresponding in shape to the organisms that constructed them, are sorted out by size – small ones are placed along the edges of the colony, while big ones are in the middle. This indicated to gradual drusen “maturing” in the environment saturated by organic matter that contained phosphorus and calcium.

Natural and “human” apatites differ in their chemical composition. The former are better crystallized, they contain less organic matter. It is not surprising because stones are million years old, and calculi are several years old. The source of calcium and phosphorus for “stone mason” bacteria are organophosphorus molecules, which are numerous both in blood and in natural water. Their cells artificially concentrate phosphorus and calcium around them, and there is no big difference from geochemistry perspective between the cardiac muscle and the bottom layer of water saturated with organic matter. Thus, the apatite in the cardiac muscle represents the initial stage of the process, and natural minerals constitute the final product.

Ability for biomineralization within the organism is closely connected with blood composition. Several years ago, biologists managed to reproduce microbe biofouling by phosphorite casings in the in vitro culture. Thus, for example, cyanobacteria are capable to get covered by the mineral within several hours. Having made sure that various “calculi” in the organism are built by bacteria, the search can be started as regards to means of impeding this construction.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Organic apatite calculi cardiolytes phosphorus

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>