Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In young mice, gregariousness seems to reside in the genes

05.04.2007
Beyond the lineage of primates, according to scientific gospel, social behavior is dictated primarily by competition for resources such as food, territory and reproduction.

That may well be true for many adult animals, but in a groundbreaking study researchers from the University of Wisconsin-Madison have found evidence that social interactions among young mice result from basic motivations to be with one another. What's more, the researchers say, the extent of a young mouse's gregariousness is influenced by its genetic background.

The work, reported today (April 3, 2007) in the journal Public Library of Science (PLoS) One, is important because it provides the first scientific insight that genes contribute to a novel form of natural reward - the pleasure of interacting with other juveniles. At a practical level, the new findings provide a foundation for understanding the motivations that underlie acts of altruism. Moreover, the work may also help influence the development of new, more effective drugs to treat depression, addiction and autism.

"We are quite confident it is genetic," says Jules B. Panksepp, a UW-Madison neuroscience graduate student and the lead author of the new study, which was conducted using two different strains of young mice, one gregarious in nature, the other much less so. "Their motivation to engage others varies with their genetic background; it appears to affect how young mice approach social situations."

The inbred strains of mice used in the study, once weaned, display markedly different social aptitudes. Young mice from one strain are amicable, spending much more time seeking out and interacting with other mice introduced into their environment. By controlling for a host of behavioral variables during the course of adolescent development, the researchers demonstrated specific differences in social motivations among juveniles of the two mouse strains - behavioral variations that could only be explained by genetic differences.

Intriguingly, the Wisconsin researchers also found that young mice from the gregarious strain seek environments that predict the possibility of a social encounter and avoid places where they have experienced social isolation.

"They like company. That's the point," says Garet Lahvis, of the gregarious strain of mouse. Lahvis is a professor of surgery in the UW School of Medicine and Public Health and the senior author of the new study.

Performing under the dim glow of red lights to simulate the nocturnal environment when mice are most active, the sociability of test mice was assessed when they were reunited with their former cage mates. At the same time, the researchers tuned in to the ultrasonic chattering that mice use to communicate with each other.

For the more socially predisposed animal, gregariousness was the order of the day, says Lahvis: "A young mouse will seek social interaction and avoid isolation. The social life of these animals is a rich integration of behavior, vocalizations and positive emotional experience."

The level of social interplay of the two strains of mice, Panksepp and Lahvis note, is mirrored in their vocalizations, and the differences in vocalization between the two types of mouse also segregated with genetic background.

"We identified associations between types of mouse vocalizations and the extent of their social interactions," says Lahvis. "There is an association between high-pitched calls in mice and positive experience. The quality and quantity of the call are tightly associated with the nature of the interaction itself."

As the mice neared sexual maturity, the genetic influence on social behavior ebbed and the animals became much more responsive to social cues such as gender, according to Lahvis.

"As they get older, they take on the [behavioral] characteristics associated with gender," Lahvis explains. "The initial genetic predisposition gets masked by reproductive maturity."

This result is crucial, argue Lahvis and Panksepp, because it suggests that the genetic influences on juvenile social behavior may be quite distinct from genetic factors that affect adult social behavior, a finding the researchers suggest has great importance for understanding social evolution, as well as developing more realistic animal models of pervasive developmental disorders, such as autism.

In past research, the social capacities of rodents have been studied primarily in the context of behaviors associated with sexual reproduction, territorial defense and parental care. Those studies, say Lahvis and Panksepp, do not account for the many forms of social interaction that occur prior to sexual maturity, nor do they account for the many kinds of social groupings that occur throughout the animal kingdom and provide much more subtle benefits to an individual.

Results of the new work suggest that juvenile animals may experience different emotional states, depending upon whether they are alone or with others, and that specific genes may influence how they feel within different social contexts.

Identifying the gene or genes at play, says Lahvis, is the next step. "We now know that social motivation can be responsive to genetic factors, but we don't know what these factors are."

Garet P. Lahvis | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Interaction Panksepp gregarious gregariousness juvenile vocalization

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>