Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In young mice, gregariousness seems to reside in the genes

Beyond the lineage of primates, according to scientific gospel, social behavior is dictated primarily by competition for resources such as food, territory and reproduction.

That may well be true for many adult animals, but in a groundbreaking study researchers from the University of Wisconsin-Madison have found evidence that social interactions among young mice result from basic motivations to be with one another. What's more, the researchers say, the extent of a young mouse's gregariousness is influenced by its genetic background.

The work, reported today (April 3, 2007) in the journal Public Library of Science (PLoS) One, is important because it provides the first scientific insight that genes contribute to a novel form of natural reward - the pleasure of interacting with other juveniles. At a practical level, the new findings provide a foundation for understanding the motivations that underlie acts of altruism. Moreover, the work may also help influence the development of new, more effective drugs to treat depression, addiction and autism.

"We are quite confident it is genetic," says Jules B. Panksepp, a UW-Madison neuroscience graduate student and the lead author of the new study, which was conducted using two different strains of young mice, one gregarious in nature, the other much less so. "Their motivation to engage others varies with their genetic background; it appears to affect how young mice approach social situations."

The inbred strains of mice used in the study, once weaned, display markedly different social aptitudes. Young mice from one strain are amicable, spending much more time seeking out and interacting with other mice introduced into their environment. By controlling for a host of behavioral variables during the course of adolescent development, the researchers demonstrated specific differences in social motivations among juveniles of the two mouse strains - behavioral variations that could only be explained by genetic differences.

Intriguingly, the Wisconsin researchers also found that young mice from the gregarious strain seek environments that predict the possibility of a social encounter and avoid places where they have experienced social isolation.

"They like company. That's the point," says Garet Lahvis, of the gregarious strain of mouse. Lahvis is a professor of surgery in the UW School of Medicine and Public Health and the senior author of the new study.

Performing under the dim glow of red lights to simulate the nocturnal environment when mice are most active, the sociability of test mice was assessed when they were reunited with their former cage mates. At the same time, the researchers tuned in to the ultrasonic chattering that mice use to communicate with each other.

For the more socially predisposed animal, gregariousness was the order of the day, says Lahvis: "A young mouse will seek social interaction and avoid isolation. The social life of these animals is a rich integration of behavior, vocalizations and positive emotional experience."

The level of social interplay of the two strains of mice, Panksepp and Lahvis note, is mirrored in their vocalizations, and the differences in vocalization between the two types of mouse also segregated with genetic background.

"We identified associations between types of mouse vocalizations and the extent of their social interactions," says Lahvis. "There is an association between high-pitched calls in mice and positive experience. The quality and quantity of the call are tightly associated with the nature of the interaction itself."

As the mice neared sexual maturity, the genetic influence on social behavior ebbed and the animals became much more responsive to social cues such as gender, according to Lahvis.

"As they get older, they take on the [behavioral] characteristics associated with gender," Lahvis explains. "The initial genetic predisposition gets masked by reproductive maturity."

This result is crucial, argue Lahvis and Panksepp, because it suggests that the genetic influences on juvenile social behavior may be quite distinct from genetic factors that affect adult social behavior, a finding the researchers suggest has great importance for understanding social evolution, as well as developing more realistic animal models of pervasive developmental disorders, such as autism.

In past research, the social capacities of rodents have been studied primarily in the context of behaviors associated with sexual reproduction, territorial defense and parental care. Those studies, say Lahvis and Panksepp, do not account for the many forms of social interaction that occur prior to sexual maturity, nor do they account for the many kinds of social groupings that occur throughout the animal kingdom and provide much more subtle benefits to an individual.

Results of the new work suggest that juvenile animals may experience different emotional states, depending upon whether they are alone or with others, and that specific genes may influence how they feel within different social contexts.

Identifying the gene or genes at play, says Lahvis, is the next step. "We now know that social motivation can be responsive to genetic factors, but we don't know what these factors are."

Garet P. Lahvis | EurekAlert!
Further information:

Further reports about: Interaction Panksepp gregarious gregariousness juvenile vocalization

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>