Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thioethers synthesis process

03.04.2007
Although today there exists a number of methods for the synthesis of organic molecules (the main components of certain medicines, foods, additives, paints, fabrics, liquid crystals, etc.), in most cases toxic reagents and solvents have to be used.

In these processes, moreover, contaminant waste is produced This is why coming up with a procedure that avoids these drawbacks is a good thing all round. As regards solvents, water is undoubtedly the most suitable, in this respect, due to its abundance, utility, economy, non-toxicity and environmental advantages. And what about if the key to the reaction is using the minimum quantity of catalyst? And if all that involved in the reaction (including the catalyst) is recyclable or can be directly reused?

These precisely, have been the goals of a research group of the Department of Organic Chemistry II at the University of the Basque Country (UPV-EHU) on proposing a new method for the synthesis of diaryl sulphide, objectives which, to a great extent have been met. This is because, for the invention of a method for the synthesis of thioether derivatives, diaryl sulphides are prepared in a very simple way employing a catalyst of copper salt in water. This reaction medium is recyclable. Thus, it is worth studying in depth the research work undertaken by the UPV-EHU and which is patent- protected.

Diaryl sulphides are essential components in certain medicinal drugs and their structure or “skeleton” also appears in pharmacologically efficient molecules. In any case, their methods of synthesis are limited, given that, apart from the fact that they are not viable on applying them in great quantities, they are also quite contaminant. In fact, bonding arene and sulphur (the C(aryl)-S bond) has been no easy task, historically. With the process carried out by doctors M. Carril, R. San Martín and E. Domínguez, water is the only solvent employed in the reaction; it is a cheap solvent, easily handled and does not produce any contamination. Likewise, the initial reagents (arylthiols and halides) are accessible in great quantities. The catalyst sources, i.e. the copper salts are cheap and, as the reaction is produced in an aqueous medium, there is no need for any extreme condition such as an inert atmosphere. Once the reaction is concluded, the results are extracted from the aqueous medium where the catalyst is found and the reagents and base can be added to start the reaction again. As both the solvent and the copper source can be reused, the costs savings are evident. Also, the water, unlike many solvents used in industrial processes, is not toxic, nor is it flammable. Its safety behaviour is such that no safety measure is necessary for its storage or in its handling.

... more about:
»catalyst »solvent »sulphide »synthesis

In this respect, it would be desirable for this method for the sustainable development employed in the case of diaryl sulphide to be a reality for other chemical processes.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1264

Further reports about: catalyst solvent sulphide synthesis

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>