Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notorious cancer gene may work by destroying messenger

21.03.2007
A new study suggests how a notorious cancer gene may contribute to tumor growth.

The insight emerged from a long-running study of a protein called PMR1, the key player in an unusual mechanism that cells use to quickly stop production of certain important proteins.

Researchers discovered that PMR1 is activated – or “turned on – by another molecule, an energy-packing protein called Src (pronounced “sark”).

Discovered in 1977, Src became the first “oncogene” – mutated genes that help make cells cancerous. Oncogenes are altered forms of genes that control cell growth and cell division.

These findings provide insight into how Src might contribute to cancer development.
... more about:
»Cancer »Control »PMR1 »SRC »Schoenberg »mRNA

The study by researchers with the Ohio State University Comprehensive Cancer Center is published in the March 9 issue of the journal Molecular Cell.

“The link between Src and cancer was discovered 30 years ago, but to this day, we still don't know its exact role in tumor development,” says principal investigator Daniel R. Schoenberg, professor of molecular and cellular biochemistry.

“Our data suggest that Src may promote cancer by causing PMR1 to halt production of proteins that normally put the brakes on cell growth – tumor-suppressor proteins, for example, or other growth-regulating proteins.”

In healthy cells, Src helps control cell proliferation, differentiation, survival and movement. Mutated Src is found in about half of all colon, liver, lung, breast and pancreatic tumors, and the amount of Src can be significantly higher in cancer cells compared to normal cells.

Earlier research led by Schoenberg found that PMR1 helps control protein production by destroying particular messenger RNAs (mRNAs), molecules that carry the information used to assemble a protein.

That work showed that PMR1 attaches to the mRNAs and remains there as a silent passenger. If it receives the proper signal, however, the protein chops up and destroys the mRNA, which instantly stops production of that protein.

Cells use that mechanism to control the production of proteins such as growth factors, which activate genes in response to a hormone or other signal.

PMR1 also plays a key role in Cooley's anemia, which causes the loss of red blood cells in infants and children.

For the present study, Schoenberg and coauthor Yong Peng, a research associate in Schoenberg's laboratory, wanted to learn how PMR1 is activated to attach to mRNAs.

They found that activation occurs when PMR1 is momentarily joined by an unidentified enzyme. Contact with this enzyme changes the properties of PMR1, and this enables it to join with, or bind to, its target mRNA.

Peng then used monoclonal antibodies to isolate PMR1 and the enzyme while the two were bound together, capturing both. After separating the two, the investigators identified the enzyme as Src, which is a member of a large family of molecules called tyrosine kinases. These molecules act like switches that turn other molecules on and off, including PMR1.

“That's the real excitement about this paper,” Schoenberg says. “We came at this with an interest in mRNA decay, and we may have stumbled across a fundamental mechanism of cancer.”

Next, Schoenberg and his associates Xiaoqiang Liu and Elizabeth Murray will use three cancer-cell lines to try to identify what messenger RNAs – which will also tell them what proteins – are targeted and destroyed by PMR1.

“That will help tell us whether Src works through PMR1 to contribute to cancer,” Schoenberg says.

Funding from the National Institute for General Medical Sciences supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer Control PMR1 SRC Schoenberg mRNA

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>