Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triplex assay used to assay duplex genomic DNA

21.03.2007
Direct detection of base sequence in duplex nucleic acid has long been an unfulfilled objective. Ingeneus Research will publish “Heteropolymeric Triplex-Based Genomic Assay to Detect Pathogens or Single-Nucleotide Polymorphisms in Human Genomic Samples” in the March 21st issue of the international, peer-reviewed, open access, online journal, PLoS ONE.

In the article they present a wealth of data relating to the assay of pathogens in samples also containing human genomic duplex DNA and to the assay of SNPs present in human genomic samples. The assays are carried out homogeneously and in solution at room temperature. Reactions can be monitored after as little as five minutes. The highly sensitive diagnostic assay allows for the direct detection of base sequence in human genomic duplex samples, thereby obviating the use of PCR which has inherent problems and is costly.

“We developed the heteropolymeric triplex assay step by step” says Jasmine Daksis, Senior Scientist with Ingeneus Research. “We started with synthetic 50-mer duplex targets and have developed our methods to the point where human genomic samples can be assayed.” The assay uses YOYO-1, a bis-intercalator, to de-condense the duplex target, which renders the duplex nucleic acid readily reactive to oligo ssDNA probes. Any sequence present in the duplex may be specifically assayed. It is surmised that specific third strand binding creates additional grooves into which additional YOYO-1 molecules intercalate.

“We have decided not to focus on improving probe chemistry at this time, but rather to develop a flow injection based instrument which is matched to our chemistry,” continued Daksis. Their Genome Flow instrument, which employs hardware from FIALab Instruments of Bellevue, Washington, has one moving part, the syringe pump. It allows samples to be automatically quantitated, a necessary step in the Genomic Assay because samples must be brought to a standard concentration, so they can be mixed with standard amounts of oligo probes for the purpose of automatic in solution assay. The instrument is easy to program, self-cleaning and inexpensive.

... more about:
»Assay »Duplex »Genom »genomic

Daksis indicated that she expected to soon publish data on the use of the Genome Flow instrument to carry out triplex assaying of genomic samples for pathogens or SNPs.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000305

Further reports about: Assay Duplex Genom genomic

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>