Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triplex assay used to assay duplex genomic DNA

21.03.2007
Direct detection of base sequence in duplex nucleic acid has long been an unfulfilled objective. Ingeneus Research will publish “Heteropolymeric Triplex-Based Genomic Assay to Detect Pathogens or Single-Nucleotide Polymorphisms in Human Genomic Samples” in the March 21st issue of the international, peer-reviewed, open access, online journal, PLoS ONE.

In the article they present a wealth of data relating to the assay of pathogens in samples also containing human genomic duplex DNA and to the assay of SNPs present in human genomic samples. The assays are carried out homogeneously and in solution at room temperature. Reactions can be monitored after as little as five minutes. The highly sensitive diagnostic assay allows for the direct detection of base sequence in human genomic duplex samples, thereby obviating the use of PCR which has inherent problems and is costly.

“We developed the heteropolymeric triplex assay step by step” says Jasmine Daksis, Senior Scientist with Ingeneus Research. “We started with synthetic 50-mer duplex targets and have developed our methods to the point where human genomic samples can be assayed.” The assay uses YOYO-1, a bis-intercalator, to de-condense the duplex target, which renders the duplex nucleic acid readily reactive to oligo ssDNA probes. Any sequence present in the duplex may be specifically assayed. It is surmised that specific third strand binding creates additional grooves into which additional YOYO-1 molecules intercalate.

“We have decided not to focus on improving probe chemistry at this time, but rather to develop a flow injection based instrument which is matched to our chemistry,” continued Daksis. Their Genome Flow instrument, which employs hardware from FIALab Instruments of Bellevue, Washington, has one moving part, the syringe pump. It allows samples to be automatically quantitated, a necessary step in the Genomic Assay because samples must be brought to a standard concentration, so they can be mixed with standard amounts of oligo probes for the purpose of automatic in solution assay. The instrument is easy to program, self-cleaning and inexpensive.

... more about:
»Assay »Duplex »Genom »genomic

Daksis indicated that she expected to soon publish data on the use of the Genome Flow instrument to carry out triplex assaying of genomic samples for pathogens or SNPs.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000305

Further reports about: Assay Duplex Genom genomic

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>