Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will the Plague Pathogen Become Resistant to Antibiotics?

21.03.2007
A small piece of DNA that helps bacteria commonly found in US meat and poultry resist several antibiotics has also been found in the plague bacillus Yersinia pestis, gene sequence researchers report.

The ability to resist many of the antibiotics used against plague has been found so far in only a single case of the disease in Madagascar. But because the same ability is present in other kinds of bacteria from a broad range of livestock, antibiotic resistance could potentially spread to other Y. pestis and also other bacterial pathogens. In a paper published March 21 in the new journal PLoS ONE, the authors say this possibility "represents a significant public health concern."

Genetic ability to disable antibiotics, including multidrug resistance (MDR) sequences, is carried on plasmids, small circles of DNA that are passed easily between bacteria. In this study, the same MDR plasmids found in the Y. pestis from Madagascar were also present in bacteria such as Salmonella and Escherichia coli found in retail samples of beef, pork, chicken, and turkey from several US states.

"What we've done is revealed a mechanism for the acquisition of multidrug resistance in Y. pestis. Obviously, this is an event that might have serious human health consequences. But the sequencing work we've done has given us a way to monitor this plasmid in future," says senior author Jacques Ravel of The Institute for Genomic Research (TIGR) in Rockville, MD.

... more about:
»MDR »PLoS »Plasmid »antibiotic »pestis »resist

"The fact that we found a plasmid usually found in Salmonella in Y. pestis is a big problem. It also raises a question about how this happened, how it went from one to the other. But that's a question we cannot answer in this paper," Ravel notes. He urges a new monitoring program to track MDR in Y. pestis.

MDR Salmonella and E. coli have been found in droppings from wild geese, raising the possibility that wild animals might be able to spread MDR far beyond the livestock where it originated, Ravel notes.

"When we identified the first Y. pestis strain resistant to multiple antibiotics, we warned that if this type of strain spreads or emerges again, it would pose a serious health problem" says co-author Elisabeth Carniel, head of the Yersinia Research Unit at the Institut Pasteur in Paris. "The discovery that the multiresistance plasmid acquired by the plague bacillus is widespread in environmental bacteria reinforces this warning".

There have been many plague epidemics in human history, and Y. pestis is believed to have killed an estimated 200 million people. Plague is now regarded as a re-emerging disease, with small outbreaks all over the world. Because plague is often fatal, Y. pestis is a potential agent for bioterrorism. There is no vaccine, but antibiotics are useful for treatment and for preventing the disease's spread. The researchers observe, "Our data imply that high levels of MDR in the causative agent of plague may rapidly evolve naturally, and present a vital biomedical, public health, and biodefense threat."

The paper resulted from an international collaboration among researchers at TIGR, a division of the J. Craig Venter Institute, the Institut Pasteur in Paris, the Agricultural Research Service of the US Department of Agriculture, and the US Food and Drug Administration. This work was performed at the National Institute of Allergy and Infectious Diseases-funded Microbial Sequencing Center managed by TIGR.

The paper appears in the March 21 issue of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS). After publication, the paper will be available on the PLoS ONE site (www.plosone.org) and at http://dx.doi.org/10.1371/journal.pone.0000309.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000309

Further reports about: MDR PLoS Plasmid antibiotic pestis resist

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>