Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will the Plague Pathogen Become Resistant to Antibiotics?

21.03.2007
A small piece of DNA that helps bacteria commonly found in US meat and poultry resist several antibiotics has also been found in the plague bacillus Yersinia pestis, gene sequence researchers report.

The ability to resist many of the antibiotics used against plague has been found so far in only a single case of the disease in Madagascar. But because the same ability is present in other kinds of bacteria from a broad range of livestock, antibiotic resistance could potentially spread to other Y. pestis and also other bacterial pathogens. In a paper published March 21 in the new journal PLoS ONE, the authors say this possibility "represents a significant public health concern."

Genetic ability to disable antibiotics, including multidrug resistance (MDR) sequences, is carried on plasmids, small circles of DNA that are passed easily between bacteria. In this study, the same MDR plasmids found in the Y. pestis from Madagascar were also present in bacteria such as Salmonella and Escherichia coli found in retail samples of beef, pork, chicken, and turkey from several US states.

"What we've done is revealed a mechanism for the acquisition of multidrug resistance in Y. pestis. Obviously, this is an event that might have serious human health consequences. But the sequencing work we've done has given us a way to monitor this plasmid in future," says senior author Jacques Ravel of The Institute for Genomic Research (TIGR) in Rockville, MD.

... more about:
»MDR »PLoS »Plasmid »antibiotic »pestis »resist

"The fact that we found a plasmid usually found in Salmonella in Y. pestis is a big problem. It also raises a question about how this happened, how it went from one to the other. But that's a question we cannot answer in this paper," Ravel notes. He urges a new monitoring program to track MDR in Y. pestis.

MDR Salmonella and E. coli have been found in droppings from wild geese, raising the possibility that wild animals might be able to spread MDR far beyond the livestock where it originated, Ravel notes.

"When we identified the first Y. pestis strain resistant to multiple antibiotics, we warned that if this type of strain spreads or emerges again, it would pose a serious health problem" says co-author Elisabeth Carniel, head of the Yersinia Research Unit at the Institut Pasteur in Paris. "The discovery that the multiresistance plasmid acquired by the plague bacillus is widespread in environmental bacteria reinforces this warning".

There have been many plague epidemics in human history, and Y. pestis is believed to have killed an estimated 200 million people. Plague is now regarded as a re-emerging disease, with small outbreaks all over the world. Because plague is often fatal, Y. pestis is a potential agent for bioterrorism. There is no vaccine, but antibiotics are useful for treatment and for preventing the disease's spread. The researchers observe, "Our data imply that high levels of MDR in the causative agent of plague may rapidly evolve naturally, and present a vital biomedical, public health, and biodefense threat."

The paper resulted from an international collaboration among researchers at TIGR, a division of the J. Craig Venter Institute, the Institut Pasteur in Paris, the Agricultural Research Service of the US Department of Agriculture, and the US Food and Drug Administration. This work was performed at the National Institute of Allergy and Infectious Diseases-funded Microbial Sequencing Center managed by TIGR.

The paper appears in the March 21 issue of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS). After publication, the paper will be available on the PLoS ONE site (www.plosone.org) and at http://dx.doi.org/10.1371/journal.pone.0000309.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000309

Further reports about: MDR PLoS Plasmid antibiotic pestis resist

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>