Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will the Plague Pathogen Become Resistant to Antibiotics?

21.03.2007
A small piece of DNA that helps bacteria commonly found in US meat and poultry resist several antibiotics has also been found in the plague bacillus Yersinia pestis, gene sequence researchers report.

The ability to resist many of the antibiotics used against plague has been found so far in only a single case of the disease in Madagascar. But because the same ability is present in other kinds of bacteria from a broad range of livestock, antibiotic resistance could potentially spread to other Y. pestis and also other bacterial pathogens. In a paper published March 21 in the new journal PLoS ONE, the authors say this possibility "represents a significant public health concern."

Genetic ability to disable antibiotics, including multidrug resistance (MDR) sequences, is carried on plasmids, small circles of DNA that are passed easily between bacteria. In this study, the same MDR plasmids found in the Y. pestis from Madagascar were also present in bacteria such as Salmonella and Escherichia coli found in retail samples of beef, pork, chicken, and turkey from several US states.

"What we've done is revealed a mechanism for the acquisition of multidrug resistance in Y. pestis. Obviously, this is an event that might have serious human health consequences. But the sequencing work we've done has given us a way to monitor this plasmid in future," says senior author Jacques Ravel of The Institute for Genomic Research (TIGR) in Rockville, MD.

... more about:
»MDR »PLoS »Plasmid »antibiotic »pestis »resist

"The fact that we found a plasmid usually found in Salmonella in Y. pestis is a big problem. It also raises a question about how this happened, how it went from one to the other. But that's a question we cannot answer in this paper," Ravel notes. He urges a new monitoring program to track MDR in Y. pestis.

MDR Salmonella and E. coli have been found in droppings from wild geese, raising the possibility that wild animals might be able to spread MDR far beyond the livestock where it originated, Ravel notes.

"When we identified the first Y. pestis strain resistant to multiple antibiotics, we warned that if this type of strain spreads or emerges again, it would pose a serious health problem" says co-author Elisabeth Carniel, head of the Yersinia Research Unit at the Institut Pasteur in Paris. "The discovery that the multiresistance plasmid acquired by the plague bacillus is widespread in environmental bacteria reinforces this warning".

There have been many plague epidemics in human history, and Y. pestis is believed to have killed an estimated 200 million people. Plague is now regarded as a re-emerging disease, with small outbreaks all over the world. Because plague is often fatal, Y. pestis is a potential agent for bioterrorism. There is no vaccine, but antibiotics are useful for treatment and for preventing the disease's spread. The researchers observe, "Our data imply that high levels of MDR in the causative agent of plague may rapidly evolve naturally, and present a vital biomedical, public health, and biodefense threat."

The paper resulted from an international collaboration among researchers at TIGR, a division of the J. Craig Venter Institute, the Institut Pasteur in Paris, the Agricultural Research Service of the US Department of Agriculture, and the US Food and Drug Administration. This work was performed at the National Institute of Allergy and Infectious Diseases-funded Microbial Sequencing Center managed by TIGR.

The paper appears in the March 21 issue of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS). After publication, the paper will be available on the PLoS ONE site (www.plosone.org) and at http://dx.doi.org/10.1371/journal.pone.0000309.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000309

Further reports about: MDR PLoS Plasmid antibiotic pestis resist

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>