Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hohenstein Institutes present a new area of key research - Textile odour analysis

Thanks to the close interdisciplinary cooperation between textile chemists and human biologists, the experts at the Hohenstein Institutes in Bönnigheim now have an innovative analytical method which can be used to characterise odour molecules in qualitative terms.

The new area of research promises particularly interesting findings for the development of clothing and home textiles, as well as technical, medical and wellness textiles, as it will make it possible to objectively examine related questions regarding textiles and odour in future.

The analysis developed using GC/MS-technology simulates the human nose and is able to identify odour molecules released from textiles and other materials, including the odour of human skin. It also makes it possible to chemically determine the relevant odour molecules accurately, including a representation of the relevant chemical structure. However, unlike the human nose, the new process can also determine the exact quantity of odour molecules released.

Possible applications being looked into within the new field of research at Hohenstein include current clothing trends such as textiles for aromatherapy. However, the manufacture of detergents and washing machines also represents one possible area of application for odour analysis. Researchers at the Hohenstein Institutes are also looking into initial strategies for optimising antimicrobially active textiles with the aim of minimising the formation of perspiration odour. For this, textile odour analysis is carried out following in-vivo wear tests on test subjects.

... more about:
»Hohenstein »Molecules »odour »textile

Contacts at the Hohenstein Institutes for further information on textile odour analysis are:

Dr. Jan Beringer,
Dr. Dirk Höfer

Rose-Marie Riedl | idw
Further information:

Further reports about: Hohenstein Molecules odour textile

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>