Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hohenstein Institutes present a new area of key research - Textile odour analysis

19.03.2007
Thanks to the close interdisciplinary cooperation between textile chemists and human biologists, the experts at the Hohenstein Institutes in Bönnigheim now have an innovative analytical method which can be used to characterise odour molecules in qualitative terms.

The new area of research promises particularly interesting findings for the development of clothing and home textiles, as well as technical, medical and wellness textiles, as it will make it possible to objectively examine related questions regarding textiles and odour in future.

The analysis developed using GC/MS-technology simulates the human nose and is able to identify odour molecules released from textiles and other materials, including the odour of human skin. It also makes it possible to chemically determine the relevant odour molecules accurately, including a representation of the relevant chemical structure. However, unlike the human nose, the new process can also determine the exact quantity of odour molecules released.

Possible applications being looked into within the new field of research at Hohenstein include current clothing trends such as textiles for aromatherapy. However, the manufacture of detergents and washing machines also represents one possible area of application for odour analysis. Researchers at the Hohenstein Institutes are also looking into initial strategies for optimising antimicrobially active textiles with the aim of minimising the formation of perspiration odour. For this, textile odour analysis is carried out following in-vivo wear tests on test subjects.

... more about:
»Hohenstein »Molecules »odour »textile

Contacts at the Hohenstein Institutes for further information on textile odour analysis are:

Dr. Jan Beringer,
E-mail: j.beringer@hohenstein.de
Dr. Dirk Höfer
E-mail: d.hoefer@hohenstein.de

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

Further reports about: Hohenstein Molecules odour textile

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>