Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy for blindness clears hurdle in mice

16.03.2007
University of Florida researchers have used an experimental therapy in mice to shut down a gene that plays a crucial role in a leading cause of inherited blindness.

The technique, detailed in an upcoming issue of Vision Research, involves injecting the eye with a bit of genetic material called interfering RNA, which helps disable the gene.

Normally the gene is essential for healthy eyesight, but mutated versions of it are passed from generation to generation in some families and can lead to blindness.

Disabling the gene is a step toward developing a gene therapy to treat people with retinitis pigmentosa, an inherited disease that attacks the light-sensing cells in the eye. It affects about one in 60,000 people, with an estimated 1.5 million people afflicted worldwide.

... more about:
»Retina »Rhodopsin »blindness »mutated »therapy

"One of the causes of the disease is mutated gene expression," said Marina Gorbatyuk, Ph.D., an assistant professor of molecular genetics and microbiology in the UF College of Medicine. "We work with rhodopsin, which is the main retinal protein. Without it, or if it is mutated, people simply won’t see."

Mutated forms of the rhodopsin produce a toxic protein in the retina that kills cells that receive light. People with the disease usually notice symptoms between the ages of 10 and 30. At first they have problems seeing in dimly lit places, followed by loss of their peripheral sight. The rate of progression varies, but most patients are blind by 40.

UF Genetics Institute researchers engineered the interfering RNA into a virus, which in turn was injected below the retinas in more than a dozen normal mice. Analysis showed the technique reduced the amount of rhodopsin by about 60 percent.

With the gene drastically muzzled, scientists have begun experiments to create a therapy in which healthy versions of the gene can be introduced into the eye using an apparently harmless virus to deliver the genetic material.

"If we reduce the amount of protein formed by mutated rhodopsin, that may be sufficient to maintain vision in people who are affected by retinitis pigmentosa," Gorbatyuk said. "The second step, introducing the normal gene to the retina, will show whether we are able to restore vision in this model or not."

If both steps are perfected, scientists plan to study the treatment in a larger animal model and then possibly move to a human clinical trial.

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Retina Rhodopsin blindness mutated therapy

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>