Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Devise Process to Make Designer Plastics for Hairspray, Anti-Obesity Drugs and Inkjet Printer Ink

28.02.2002


Research chemists at the University of Warwick have devised and patented a new process called Living and Controlled Radical Polymerisation which can cheaply and easily grow designer polymers (plastics). They have already used the process to produce a wide range of designer polymer designs that are now being tested by major companies for use in applications as diverse as hairspray, anti-obesity drugs and inkjet printer ink.



Previously “designer-polymers” could only be synthesised by resorting to expensive sub-zero temperatures and extremely pure solvents and other chemicals. The designer polymer method devised by the University of Warwick research team under Professor David Haddleton uses a combination of a copper catalyst and a particular type of ligand giving the following benefits:

  • Production of complex polymers to specific designs under precise control, unlike conventional polymerisation techniques currently employed in most laboratories
  • The chemistry used is inert to many types of other chemical action, so it can be used for items that will see use in a wide variety of environments
  • No need for expensive sub-zero temperatures works from room temperature to plus 1500C
  • Does not require expensive extremely pure solvents and other very pure chemicals.

The research team has just been granted a patent on the process in Europe and the US and Professor Haddleton has now formed a spin out company called "Warwick Effect Polymers Ltd" (WEP) which has already begun to produce to order designer polymers for high-value applications such as inkjet printer ink, hairspray and shampoo, adhesives, pharmaceuticals, biomaterials and medical devices for companies such as, Unilever, Proctor and Gamble, BP Avecia, and GelTex Inc. WEP is now seeking partners to exploit the technology in licensing and joint venture agreements.


Peter Dunn | alphagalileo
Further information:
http://www.warwickeffectpolymers.co.uk

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>