Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Devise Process to Make Designer Plastics for Hairspray, Anti-Obesity Drugs and Inkjet Printer Ink

28.02.2002


Research chemists at the University of Warwick have devised and patented a new process called Living and Controlled Radical Polymerisation which can cheaply and easily grow designer polymers (plastics). They have already used the process to produce a wide range of designer polymer designs that are now being tested by major companies for use in applications as diverse as hairspray, anti-obesity drugs and inkjet printer ink.



Previously “designer-polymers” could only be synthesised by resorting to expensive sub-zero temperatures and extremely pure solvents and other chemicals. The designer polymer method devised by the University of Warwick research team under Professor David Haddleton uses a combination of a copper catalyst and a particular type of ligand giving the following benefits:

  • Production of complex polymers to specific designs under precise control, unlike conventional polymerisation techniques currently employed in most laboratories
  • The chemistry used is inert to many types of other chemical action, so it can be used for items that will see use in a wide variety of environments
  • No need for expensive sub-zero temperatures works from room temperature to plus 1500C
  • Does not require expensive extremely pure solvents and other very pure chemicals.

The research team has just been granted a patent on the process in Europe and the US and Professor Haddleton has now formed a spin out company called "Warwick Effect Polymers Ltd" (WEP) which has already begun to produce to order designer polymers for high-value applications such as inkjet printer ink, hairspray and shampoo, adhesives, pharmaceuticals, biomaterials and medical devices for companies such as, Unilever, Proctor and Gamble, BP Avecia, and GelTex Inc. WEP is now seeking partners to exploit the technology in licensing and joint venture agreements.


Peter Dunn | alphagalileo
Further information:
http://www.warwickeffectpolymers.co.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>