Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequencing advance will aid in biomass-to-biofuels conversion

08.03.2007
A collaborative research project between the U.S. Forest Service Forest Products Laboratory (FPL) and the Department of Energy Joint Genome Institute has advanced the quest for efficient conversion of plant biomass to fuels and chemicals.

"We have sequenced and assembled the complete genome of Pichia stipitis, a native xylose-fermenting yeast," says Thomas Jeffries, research microbiologist at FPL and a professor of bacteriology at the University of Wisconsin-Madison. The results of this research project will be published in the scientific journal Nature Biotechnology in April, and the report is currently available online at http://www.nature.com/nbt/journal/vaop/ncurrent/index.html.

The sequencing of P. stipitis marks an important step toward the efficient production of biofuels because the yeast can efficiently ferment xylose, a main component of plant lignocellulose. Xylose fermentation is vital to economically converting plant biomass to fuels and chemicals such as ethanol.

"A better understanding of the genetic structure of this yeast allows us to determine how specific genes are used in fermentation and then reengineer them to perform other desired functions," says Jeffries.

... more about:
»FPL »Fermentation »stipitis »xylose »yeast

For example, Jeffries explains that the fermentation of both glucose and xylose is critical to efficient bioconversion because xylose is so abundant in hardwoods and agricultural residues. However, when glucose is present, the fermentation of xylose by P. stipitis is repressed. Using their knowledge of the genetic makeup of the yeast, researchers will be able to alter the expression of the genes so that both glucose and xylose are fermented simultaneously. This will increase the efficiency, and improve the economic viability, of the process.

The U.S. Forest Service Forest Products Laboratory, with its mission to conserve and extend the country's wood resources, is a partner in the Wisconsin Bioenergy Initiative, an effort launched by the UW-Madison College of Agricultural and Life Sciences to accelerate the development of bioenergy resources. FPL scientists have been studying P. stipitis for 20 years and in that time have isolated and characterized several genes, developed improved strains, and recently licensed technology to a biotech firm for commercial development.

"We are very proud of Tom's research and the breakthroughs he and his colleagues continue to make," says FPL Directory Chris Risbrudt. "Publication in a journal of such importance to the scientific community demonstrates the capability of FPL's researchers and our status as a world-class facility."

"The genetic blueprint reported in this paper will be at the foundation of new biofuels technology that will be developed under the auspices of the Wisconsin Bioenergy Initiative," reports Tim Donohue, professor of bacteriology.

"It will have benefits in making ethanol production from plant sugars more efficient in the short term and it is likely to help develop long-term bioenergy solutions that help Wisconsin assume a position of leadership in the rapidly growing biofuels economy."

Thomas Jeffries | EurekAlert!
Further information:
http://www.wisc.edu
http://www.nature.com/nbt/journal/vaop/ncurrent/index.html

Further reports about: FPL Fermentation stipitis xylose yeast

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>