Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequencing advance will aid in biomass-to-biofuels conversion

08.03.2007
A collaborative research project between the U.S. Forest Service Forest Products Laboratory (FPL) and the Department of Energy Joint Genome Institute has advanced the quest for efficient conversion of plant biomass to fuels and chemicals.

"We have sequenced and assembled the complete genome of Pichia stipitis, a native xylose-fermenting yeast," says Thomas Jeffries, research microbiologist at FPL and a professor of bacteriology at the University of Wisconsin-Madison. The results of this research project will be published in the scientific journal Nature Biotechnology in April, and the report is currently available online at http://www.nature.com/nbt/journal/vaop/ncurrent/index.html.

The sequencing of P. stipitis marks an important step toward the efficient production of biofuels because the yeast can efficiently ferment xylose, a main component of plant lignocellulose. Xylose fermentation is vital to economically converting plant biomass to fuels and chemicals such as ethanol.

"A better understanding of the genetic structure of this yeast allows us to determine how specific genes are used in fermentation and then reengineer them to perform other desired functions," says Jeffries.

... more about:
»FPL »Fermentation »stipitis »xylose »yeast

For example, Jeffries explains that the fermentation of both glucose and xylose is critical to efficient bioconversion because xylose is so abundant in hardwoods and agricultural residues. However, when glucose is present, the fermentation of xylose by P. stipitis is repressed. Using their knowledge of the genetic makeup of the yeast, researchers will be able to alter the expression of the genes so that both glucose and xylose are fermented simultaneously. This will increase the efficiency, and improve the economic viability, of the process.

The U.S. Forest Service Forest Products Laboratory, with its mission to conserve and extend the country's wood resources, is a partner in the Wisconsin Bioenergy Initiative, an effort launched by the UW-Madison College of Agricultural and Life Sciences to accelerate the development of bioenergy resources. FPL scientists have been studying P. stipitis for 20 years and in that time have isolated and characterized several genes, developed improved strains, and recently licensed technology to a biotech firm for commercial development.

"We are very proud of Tom's research and the breakthroughs he and his colleagues continue to make," says FPL Directory Chris Risbrudt. "Publication in a journal of such importance to the scientific community demonstrates the capability of FPL's researchers and our status as a world-class facility."

"The genetic blueprint reported in this paper will be at the foundation of new biofuels technology that will be developed under the auspices of the Wisconsin Bioenergy Initiative," reports Tim Donohue, professor of bacteriology.

"It will have benefits in making ethanol production from plant sugars more efficient in the short term and it is likely to help develop long-term bioenergy solutions that help Wisconsin assume a position of leadership in the rapidly growing biofuels economy."

Thomas Jeffries | EurekAlert!
Further information:
http://www.wisc.edu
http://www.nature.com/nbt/journal/vaop/ncurrent/index.html

Further reports about: FPL Fermentation stipitis xylose yeast

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>