Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequencing advance will aid in biomass-to-biofuels conversion

08.03.2007
A collaborative research project between the U.S. Forest Service Forest Products Laboratory (FPL) and the Department of Energy Joint Genome Institute has advanced the quest for efficient conversion of plant biomass to fuels and chemicals.

"We have sequenced and assembled the complete genome of Pichia stipitis, a native xylose-fermenting yeast," says Thomas Jeffries, research microbiologist at FPL and a professor of bacteriology at the University of Wisconsin-Madison. The results of this research project will be published in the scientific journal Nature Biotechnology in April, and the report is currently available online at http://www.nature.com/nbt/journal/vaop/ncurrent/index.html.

The sequencing of P. stipitis marks an important step toward the efficient production of biofuels because the yeast can efficiently ferment xylose, a main component of plant lignocellulose. Xylose fermentation is vital to economically converting plant biomass to fuels and chemicals such as ethanol.

"A better understanding of the genetic structure of this yeast allows us to determine how specific genes are used in fermentation and then reengineer them to perform other desired functions," says Jeffries.

... more about:
»FPL »Fermentation »stipitis »xylose »yeast

For example, Jeffries explains that the fermentation of both glucose and xylose is critical to efficient bioconversion because xylose is so abundant in hardwoods and agricultural residues. However, when glucose is present, the fermentation of xylose by P. stipitis is repressed. Using their knowledge of the genetic makeup of the yeast, researchers will be able to alter the expression of the genes so that both glucose and xylose are fermented simultaneously. This will increase the efficiency, and improve the economic viability, of the process.

The U.S. Forest Service Forest Products Laboratory, with its mission to conserve and extend the country's wood resources, is a partner in the Wisconsin Bioenergy Initiative, an effort launched by the UW-Madison College of Agricultural and Life Sciences to accelerate the development of bioenergy resources. FPL scientists have been studying P. stipitis for 20 years and in that time have isolated and characterized several genes, developed improved strains, and recently licensed technology to a biotech firm for commercial development.

"We are very proud of Tom's research and the breakthroughs he and his colleagues continue to make," says FPL Directory Chris Risbrudt. "Publication in a journal of such importance to the scientific community demonstrates the capability of FPL's researchers and our status as a world-class facility."

"The genetic blueprint reported in this paper will be at the foundation of new biofuels technology that will be developed under the auspices of the Wisconsin Bioenergy Initiative," reports Tim Donohue, professor of bacteriology.

"It will have benefits in making ethanol production from plant sugars more efficient in the short term and it is likely to help develop long-term bioenergy solutions that help Wisconsin assume a position of leadership in the rapidly growing biofuels economy."

Thomas Jeffries | EurekAlert!
Further information:
http://www.wisc.edu
http://www.nature.com/nbt/journal/vaop/ncurrent/index.html

Further reports about: FPL Fermentation stipitis xylose yeast

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>