Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequencing advance will aid in biomass-to-biofuels conversion

08.03.2007
A collaborative research project between the U.S. Forest Service Forest Products Laboratory (FPL) and the Department of Energy Joint Genome Institute has advanced the quest for efficient conversion of plant biomass to fuels and chemicals.

"We have sequenced and assembled the complete genome of Pichia stipitis, a native xylose-fermenting yeast," says Thomas Jeffries, research microbiologist at FPL and a professor of bacteriology at the University of Wisconsin-Madison. The results of this research project will be published in the scientific journal Nature Biotechnology in April, and the report is currently available online at http://www.nature.com/nbt/journal/vaop/ncurrent/index.html.

The sequencing of P. stipitis marks an important step toward the efficient production of biofuels because the yeast can efficiently ferment xylose, a main component of plant lignocellulose. Xylose fermentation is vital to economically converting plant biomass to fuels and chemicals such as ethanol.

"A better understanding of the genetic structure of this yeast allows us to determine how specific genes are used in fermentation and then reengineer them to perform other desired functions," says Jeffries.

... more about:
»FPL »Fermentation »stipitis »xylose »yeast

For example, Jeffries explains that the fermentation of both glucose and xylose is critical to efficient bioconversion because xylose is so abundant in hardwoods and agricultural residues. However, when glucose is present, the fermentation of xylose by P. stipitis is repressed. Using their knowledge of the genetic makeup of the yeast, researchers will be able to alter the expression of the genes so that both glucose and xylose are fermented simultaneously. This will increase the efficiency, and improve the economic viability, of the process.

The U.S. Forest Service Forest Products Laboratory, with its mission to conserve and extend the country's wood resources, is a partner in the Wisconsin Bioenergy Initiative, an effort launched by the UW-Madison College of Agricultural and Life Sciences to accelerate the development of bioenergy resources. FPL scientists have been studying P. stipitis for 20 years and in that time have isolated and characterized several genes, developed improved strains, and recently licensed technology to a biotech firm for commercial development.

"We are very proud of Tom's research and the breakthroughs he and his colleagues continue to make," says FPL Directory Chris Risbrudt. "Publication in a journal of such importance to the scientific community demonstrates the capability of FPL's researchers and our status as a world-class facility."

"The genetic blueprint reported in this paper will be at the foundation of new biofuels technology that will be developed under the auspices of the Wisconsin Bioenergy Initiative," reports Tim Donohue, professor of bacteriology.

"It will have benefits in making ethanol production from plant sugars more efficient in the short term and it is likely to help develop long-term bioenergy solutions that help Wisconsin assume a position of leadership in the rapidly growing biofuels economy."

Thomas Jeffries | EurekAlert!
Further information:
http://www.wisc.edu
http://www.nature.com/nbt/journal/vaop/ncurrent/index.html

Further reports about: FPL Fermentation stipitis xylose yeast

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>