Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic mutations found that may cause cleft lip/palate

07.03.2007
Results could eventually help clinicians predict a family's risk of having more children with the condition

University of Iowa researchers and collaborators have identified new genetic mutations that likely cause the common form of cleft lip and palate

The results could eventually help clinicians predict a family's risk of having more children with the condition. The findings appear in the week of March 5 online Early Edition of the Proceedings of the National Academy of Sciences.

Cleft lip and palate, found in nearly one of every 700 live births worldwide, occurs when tissues that normally form the lip and palate fail to join early in fetal life. The investigation focused on genes in the fibroblast growth factor (FGF) family, which function in a signaling pathway important in fetal face development, said Bridget Riley, a student in the UI Genetics Ph.D. Program and the study's primary author.

... more about:
»FGF »Mutation »cleft »cleft lip »non-syndromic »palate

"The fibroblast growth factor signaling pathway is interesting because it is involved in many developmental processes, and we were especially interested in how it affects facial development. Prior to this study, the fibroblast growth factors had been looked at in syndromic forms of clefting but had not been examined in non-syndromic forms," said Riley, whose research team is based in the lab of Jeff Murray, M.D., a professor with multiple UI appointments and a study co-author.

The common form of cleft lip and palate is also known as non-syndromic, as it occurs in isolation and not in association with any known syndrome. The team compared the DNA from 184 people from Iowa and the Philippines had non-syndromic cleft lip and palate with DNA from people without the condition. Riley led the effort that found the mutations in FGF ligands and associated receptors.

Computer modeling of proteins, completed by Moosa Mohammadi, Ph.D., associate professor of pharmacology at New York University School of Medicine, indicated that each mutation would disrupt FGF signaling in a different way. The team will next test the mutant proteins to see if they affect protein function, Riley said.

The researchers estimate that abnormal FGF signaling may account for up to 5 percent of non-syndromic cleft lip and palate cases. Riley emphasized that the findings still need additional study but eventually could have important clinical value through the development of a diagnostic test. The findings could also provide information about FGF signaling in other craniofacial conditions.

"We're now better equipped to look at the factors that cause this birth defect and tackle improved ways to diagnose, treat and, we hope, eventually prevent the condition," said Murray, who is the Roy J. Carver Chair of Prenatal Health and professor of pediatrics in the UI Roy J. and Lucille A. Carver College of Medicine with joint appointments in pediatric dentistry in the College of Dentistry, biology in the College of Liberal Arts and Sciences, and epidemiology in the College of Public Health.

Riley initially presented study results in preliminary form at the plenary session of the annual meeting of the American Society of Human Genetics held Oct. 10 in New Orleans.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: FGF Mutation cleft cleft lip non-syndromic palate

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>