Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests that the production of misshaped proteins ...

07.03.2007
- like the ones associated with neurodegenerative diseases – can affect the immune system

The formation of misshaped proteins - a process suggested to be behind neurodegenerative diseases such as Parkinson’s and Alzheimer’s – can affect an important molecule of the immune system (MHC class I) says a group of Portuguese scientists in an article to be published on the 15th March issue of the "Journal of Immunology".

The researchers have been studying Hereditary Hemochromatosis (HH) – which is also associated with a misshaped/misfolded protein – and discovered that the anomalies in MHC class I molecules observed in some HH patients were linked to a mechanism involved in the elimination of aberrant misfolded proteins. The discovery helps to understand better HH, the most common genetic disease among people of North Europeans ancestry, but also raises important questions on possible immune defects and their role in the many disorders associated with anomalous protein production.

HH is caused by mutations in the HFE gene - which regulates the movement of iron into the cells – and is characterised by excessive absorbance and storage of this metal in the body tissues and organs that can lead, if not treated, to organ failure and even death. Additionally, some HH patients can show anomalies in the numbers of lymphocytes whose development is associated with MHC-I molecules (MHC-I) and which are generally crucial to a proper immune response. Recent research has also shown that HH patients can have abnormal MHC class I molecules what helps to explain the other immune defects observed in these patients.

... more about:
»Almeida »HFE »MHC »MHC-I »Sousa »UPR »abnormal »misfolded »mutated

However, the connection between mutated HFE proteins and abnormal MHC-I molecules has remained a mystery until recent research on a virus of the herpes family suggested that a cellular mechanism used to get rid of misfolded proteins could also affect MHC class I. This observation has led Sergio F. de Almeida, Maria de Sousa and colleagues at Porto University and Lisbon University, Portugal to hypothesise that maybe cellular stress, induced by the production of mutated misfolded HFE proteins, could be behind the MHC-I abnormalities found in HH patients.

In fact, proteins after being produced in the nucleus are delivered to their target sites through a system of “channels” where they also undergo through constant quality controls that, if not passed, result in cellular stress and ultimately in the activation of mechanisms to eliminate the abnormal proteins. The unfolded protein response (UPR) is, like the name indicates, one of such mechanisms specifically responsible for the destruction of misshaped/misfolded proteins. And in the herpes virus study UPR also seemed to be able to affect MHC-I expression.

To test the hypothesis that UPR activation was behind the immune alterations observed in HH patients, de Almeida, de Sousa and colleagues used cells expressing MHC-I molecules but no HFE and genetically manipulated them into expressing normal or mutated (misfolded) HFE proteins. The cells were then analysed for MHC-I expression and UPR activation and compared with non-manipulated cells.

It was found that cells that expressed mutated misfolded HFE proteins showed higher levels of UPR and lower MHC-I expression (due to the production of aberrant MHC-I molecules) in comparison with cells with no HFE or cells with normal HFE proteins. Further supporting the link “misfolded HFE - UPR activation - aberrant MHC-I”, blood cells from HH patients were shown to have UPR activated. Finally, the team of researchers blocked UPR in cells with mutated HFE and this led to increased MHC-I expression further confirming the role of UPR activation behind the MHC-I problems. It was also shown that non-specific UPR activation equally affected MHC-I expression suggesting that this effect may occur in any disease where misfolded proteins are produced and is not specific to HFE

De Almeida, de Sousa and colleagues’ results establish for the first time a link between UPR activation in response to protein misfolding and abnormalities in the immune response. Their work helps the understanding of HH, a disease that affects as many as 1 in 200-300 individuals in the world, but also raises new questions for a range of other disorders, including neurodegenerative illnesses, such as Alzheimer’s, prion’s or Parkinson’s disease, and also type II diabetes and some cancers, all of which are known to be associated with misfolded proteins. The question now is to confirm and understand the possible significance of these alterations in other diseases.

Finally, de Almeida, de Sousa and colleagues’ work also might explain the reason why some viruses induce the production of aberrant misfolded proteins in their infected host as this will affect MHC class I molecules, which are crucial in the immune response against viral infections.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jimmunol.org/cgi/content/abstract/178/6/3612

Further reports about: Almeida HFE MHC MHC-I Sousa UPR abnormal misfolded mutated

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>