Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sphingolipids with therapeutic ends

05.03.2007
Sphingolipids have been known for over 120 years but, up until recently, they were thought to be molecules that simply complied with a structural function, acting, as it were, as the building blocks of the biological membranes.

In the Department of Biochemistry and Molecular Biology of the University of the Basque Country (EHU-UPV), they are trying to understand how sphingolipids operate in the cells and how they can regulate certain biological functions.

Sphingolipids are a class of fats fundamental to the architecture of the cell and for regulating metabolism. They are important regulators of certain biological functions. Biological functions as important as the regulation of cellular proliferation, i.e. cell growth. And not just growth, but also the death of the cells. Often cells die due to a problem of toxicity, a bacterial or viral infection, etc. But one of the causes why cells die is precisely because they are programmed to do so - their death is regulated, independently of whether or not they suffer from any kind of infection or traumatic event. This is a physiological process called apoptosis.

Certain sphingolipids also regulate this process. Why is this important? Imagine a metabolic dysfunction or alteration that causes the growth of a tumour. Perhaps the advance of this can be detained by adding certain sphingolipids. We would then, in a way, be treating cancer. Today there are sphingolipids that are used in many clinical trials with very good results.

... more about:
»Molecule »function »metabolism »sphingolipid

At other times the cells, instead of growing, die, causing serious conditions such as neurodegenerative diseases, Alzheimer, Parkinson, and so on. Often the neurones die because there are erroneous signals. In these cases, what is called for is to stop this death or, in some way, increase the connections between the cells in order to make up for, as it were, the spaces that they leave between each other. There are sphingolipids that carry out this process; they work to make the cells live and grow.

Regulation of metabolism

EHU-UPV researchers are currently trying to see how the sphingolipids regulate cell metabolism; to this end, they have induced alterations in the metabolism of the cell and tried to return it to normal conditions, applying synthetic sphingolipids. In short, the aim is to employ these for therapeutic ends in a number of illnesses.

One of the studies where most time is invested is the research into how certain sphingolipids control atherogenic processes - processes of formation of atheromas in the arteries. The accumulations of cholesterol in the arteries are, to a great extent, responsible for atheroma plaques. Cholesterol is transported in the blood united with a series of particles called lipoproteíns. One component of lipoproteíns is sphingomieline, a sphingolipid. Often the oxidative changes of the chemical structures of these sphingolipids are what make these molecules more atherogenic - they can transport cholesterol in a better or worse way or they can cause damage to the arteries when they are transported, etc. Thus, at the Department of Biochemistry and Molecular Biology, they are trying to understand how these sphingolipids might, in some way, contribute to the onset and advance of atherosclerosis.

Another kind of illness on which they are working is chronic obstructive pulmonary disease, which affects a large part of the population. There exist important inflammatory reactions caused by sphingolipids. They are investigating the origin of the disease and the return of the altered tissues to their normal state.

How is it being undertaken?

The process being followed is, in general, as follows: the most important cells involved in the formation, for example, of an atheroma, are the macrophages. The EHU-UPV researchers isolated the monocytes — monocytes are undifferentiated macrophages — from the femur of mice. These monocytes were incubated in Petri dishes on a suitable culture to which, moreover, a growth factor had been (such as M-CSF cytoquine). After 4 or 5 days in culture, the macrophages became differentiated and were prepared for their study.

So, for the death of these cells to be induced, they are incubated removing the cytoquine needed for growth from the culture and, thus, the cells enter into apoptosis. In the same way, adding different sphingolipids, the function carried out by each can be observed and if they have really have an effect on cell death or not. It has been observed that ceramide 1 phosphate, for example, blocks this death. It is, therefore, a life signal. On the other hand, this molecule unphosphated, i.e. ceramide, has the opposite effect. It is a death signal. Subsequently it was studied how these effects take place and part of the mechanism has been identified.

It has been shown that sphingolipids are not only inert molecules, acting as the building blocks in biological architecture, but they are also important regulators of metabolism. The next step is to apply them in an animal model, for example, inducing atherogenesis and trying to solve the problem in the whole organism using sphingolipids.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1214

Further reports about: Molecule function metabolism sphingolipid

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>