Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uncovers clues for why Graves' disease attacks the eyes

02.03.2007
Discovery suggests new target for treating the autoimmune disorder

UCLA researchers have uncovered new clues that may explain why Graves’ disease (GD) attacks the muscle tissue behind the eyes, often causing them to bulge painfully from their sockets, as in the late actor Marty Feldman.

Scientists at UCLA’s Jules Stein Eye Institute and Harbor-UCLA Medical Center discovered defects in the infection-fighting T-cells of GD patients’ immune systems. Reported March 1 in the Journal of Immunology, their study may deepen understanding of how the autoimmune disorder damages the body and offer a new target for treating the disfiguring disease.

Earlier research found that GD patients’ immune systems produce an antibody that other people do not. Not recognizing the patient’s thyroid as "self," the antibody mistakenly mounts an attack against the organ, causing inflammation and damage to the body, including eye tissue.

... more about:
»T-cell »UCLA »patients’ »receptor

In the current study, UCLA researchers discovered that T-cells taken from GD patients contain an abnormal surplus of the receptor targeted by this antibody. An antibody must latch to a specific receptor – like a key into a lock -- in order to elicit a cellular response. The receptors mobbed the patients’ immune systems, even on T-cells that normally would not produce them.

"We didn’t know why GD patients’ cells created a new antibody, but had a hunch that that it sprang from an immune abnormality," explained Dr. Raymond Douglas, first author and assistant professor of ophthalmology at the Jules Stein Eye Institute. "Because T-cells are the generals of the immune system and lead the attack in any immune response, we assumed that they played a key role in this antibody’s development."

The team tested GD patients’ blood for the antibody and compared their findings to samples from healthy people, with about 100 subjects in each group. The new antibody was found in almost all of the GD patients’ blood.

The new antibody binds to the excess receptors on the T-cells, mimicking the actions of a hormone called IGF-1, or insulin-like growth factor 1. Similar to insulin, IGF-1 stimulates cell growth while suppressing normal cell death. The team suspects that this mechanism prolongs the survival of older T-cells, causing a cascade of autoimmune problems that spur the body to attack its own tissue.

"We think that the extra receptors allow the new antibody and IGF-1 to disrupt the programming of the T-cells," said principal investigator Dr. Terry Smith, professor of medicine at the David Geffen School of Medicine and chief of molecular medicine at Harbor-UCLA Medical Center.

"The antibody provokes the receptor to signal the T-cell to grow and multiply – long after the cell was programmed to die," he explained. "After two or three generations of this process, we suspect that the high-jacked T-cells mutiny over the normal T-cells, sparking the body’s immune reaction against itself."

The next step is to identify what the T-cells are reacting to and how the receptor enables the cells to survive beyond their normal lifespan. The team plans to develop an antibody drug to block the receptor from interacting with the T-cells and slow down the disease.

In Graves’ disease, the thyroid gland goes into overdrive, producing excess levels of hormone that attack the tissue behind the eye, causing them to protrude. In extreme cases, patients experience trouble closing their eyelids, severe double vision, corneal scarring, optic nerve damage and even blindness.

Graves’ disease is nine times more common in women than men. The disorder most often strikes during the childbearing years, and runs an average course of one to two years. No cure exists, though surgery can be done at the end stage to correct disfigurement.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: T-cell UCLA patients’ receptor

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>