Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enabling nerve regeneration means evicting the cleanup crew

01.03.2007
Macrophages are the immune cells that engulf and destroy the debris of damaged tissue to enable the healing process to begin. Their presence at the scene of damage is critical, but once their task is complete, it is just as critical that macrophages exit rapidly, ending the inflammatory process and making way for regrowth. In fact, the continued presence of macrophages could damage tissue, compromising repair.

While researchers know a great deal about the molecular machinery that launches this cellular cleanup crew into action, little has been known about the just-as-critical exit process.

Now, researchers have identified a key process by which macrophages are cleared from sites of peripheral nerve injury. The scientists say their findings could also have implications for understanding the same fundamental mechanism in spinal cord injury, stroke and multiple sclerosis.

Samuel David and colleagues published their findings in the March 1, 2007 issue of the journal Neuron, published by Cell Press.

... more about:
»Myelin »NgR1 »macrophages »receptor

The researchers concentrated on a family of cell receptors known as Nogo receptors, already known to be present on nerve cells and to play a role in nerve growth. Specifically, David and colleagues explored the role of one such Nogo receptor, NgR1. Receptors such as NgR1 are protein switches that nestle in the membranes of cells, and which induce a cellular response when triggered by a specific chemical signal, or ligand.

In the researchers' experiments, they induced damage in the sciatic nerve in the thigh of rats and mice and analyzed the role of NgR1 in the repair process.

They found that macrophages showed the presence of NgR1 on their surface once they arrive at the injury site and began their cleanup. Further experiments revealed that as the healing nerve began to form the protein myelin—the insulating sheath around nerves—this receptor not only caused a reduction in the macrophages' binding to myelin, but also an outright repulsion from the forming myelin. In fact, when the researchers created nerve injury such that new myelin would not be formed, the macrophages continued to lurk around the injury site. The researchers' experiments also identified specific molecules on myelin that triggered such repulsion.

The findings could also apply to nerves other than peripheral nerves, because macrophages activated during stroke, multiple sclerosis injury, and spinal cord injury also express NgR1 on their surface, pointed out the researchers.

"Our discovery of this novel (to our knowledge) role for NgRs in mediating the efflux of macrophages from inflamed neural tissue via interactions with myelin could therefore have broader implications for the regulation of inflammatory responses not only in other peripheral nerve pathologies, but also in [central nervous system] inflammation such as in spinal cord injuries, stroke, and multiple sclerosis," they concluded.

Erin Doonan | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

Further reports about: Myelin NgR1 macrophages receptor

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>