Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Scientists Develop Promising New Procedure To Differentiate Human Embryonic Stem Cells

01.03.2007
Molecular scientists at the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) – which is part of the University of Texas Health Science Center at Houston – have developed a new procedure for the differentiation of human embryonic stem cells, with which they have created the first transplantable source of lung epithelial cells.

The process, created in the laboratory of Rick A. Wetsel, Ph.D., a professor of molecular medicine at the IMM, is described in this week’s edition of the Proceedings of the National Academy of Sciences (PNAS). Research scientist Dachun Wang, M.D., is lead author of the article, “A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.”

“We have developed a reliable molecular procedure which facilitates, via genetic selection, the differentiation of human embryonic stem cells into an essentially pure population of lung epithelial cells,” said Wetsel, noting the procedure also can be used to create other types of highly-specialized cells.

Scientists at the IMM used the in vitro method to create lung epithelial cells known as alveolar epithelial type II. The cells were derived from a human embryonic stem cell line approved by the National Institutes of Health (NIH).

The method involves the use of protein markers under the control of cell-specific promoters to convert undifferentiated human embryonic stem cells into highly-specialized cells. The human embryonic stem cells were cultured on specially coated dishes and transfected with a lung epithelial gene regulator of a drug selection gene.

“It is a general technology for developing select cells from human embryonic stem cells,” said C. Thomas Caskey, M.D., the IMM’s chief operating officer, director and CEO-elect. “The technology has allowed us to develop a platform that could potentially be useful in the development of spinal cord cells, heart cells, nerve cells and others.”

James T. Willerson, M.D., president of the UT Health Science Center at Houston, said " I believe this is an important development by the Wetsel laboratory at the IMM. I look forward to seeing its transitional impact."

Alveolar epithelial type II cells are called “the stem cells of the lungs” because of their versatility and many important functions. They produce proteins including surfactant that inflates lungs. They also make other cells lining the inner lung. “They regulate lung fluids and oxygen levels,” Wetsel said.

The cells are part of the tiny air sacs lining the lower airways known as alveoli. Tissue thin, they transfer oxygen into the blood and remove carbon dioxide. If the walls of the hundreds of millions of alveolus in a pair of lungs could be spread out and placed side by side, they would cover the floor of a classroom.

According to Wetsel, transplantable alveolar epithelial type II cells can be explored as treatments for pulmonary genetic diseases, acquired lung disease, as well as lung trauma caused by car accidents, gunshot wounds and sports injuries. “These are the cells that can potentially be used for regenerative lung repair,” he said.

Hereditary lung disorders most likely to benefit from transplantation of alveolar epithelial type II cells include respiratory distress syndrome of the newborn, alpha-1 related emphysema and cystic fibrosis, Wetsel believes. “All three of these diseases are caused by single gene defects and therefore have been logical candidates for gene therapy,” Wetsel said.

Respiratory distress syndrome of the newborn, a condition affecting premature infants less than 37 weeks of age, may be caused by a genetic mutation triggering a surfactant shortage. Likewise, alpha-1 related emphysema, a condition affecting 100,000 Americans, results from an inherited deficiency of alpha-1 antitrypsin. Further, cystic fibrosis is the second most common childhood onset inherited disorder in the United States.

Transplantable alveolar epithelial type II cells may also one day be helpful in the treatment of other lung diseases including chronic obstructive pulmonary disease (COPD), the fourth leading cause of death in the United States, claiming the lives of 122,283 Americans in 2003, and asthma, Wetsel said.

Still years away from their use in regenerative medicine, Wetsel said the next step involves research trials with mice.

Other IMM investigators participating in the study included David L. Haviland, Ph.D., assistant professor in the Center for Immunology and Autoimmune Diseases, and Eva Zsigmond, Ph.D., assistant professor and associate director of the IMM’s Laboratory for Developmental Biology.

Funding for the study of the NIH-approved human embryonic stem cell line was provided by Houston philanthropists Clive and Nancy Runnells.

The most comprehensive academic health center in the Southwest, the UT Health Science Center at Houston is home to six schools devoted to medicine, nursing, public health, dentistry, health informatics and graduate studies in biomedical science. In addition to the IMM, other components are the UT Harris County Psychiatric Center and the Mental Sciences Institute. The UT Health Science Center at Houston, founded in 1972, is part of the University of Texas System. It is a state-supported health institution whose state funding is supplemented by competitive research grants, patient fees and private philanthropy.

Rob Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

Further reports about: Embryonic IMM Wetsel alveolar embryonic stem embryonic stem cell epithelial

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>