Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Scientists Develop Promising New Procedure To Differentiate Human Embryonic Stem Cells

01.03.2007
Molecular scientists at the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) – which is part of the University of Texas Health Science Center at Houston – have developed a new procedure for the differentiation of human embryonic stem cells, with which they have created the first transplantable source of lung epithelial cells.

The process, created in the laboratory of Rick A. Wetsel, Ph.D., a professor of molecular medicine at the IMM, is described in this week’s edition of the Proceedings of the National Academy of Sciences (PNAS). Research scientist Dachun Wang, M.D., is lead author of the article, “A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.”

“We have developed a reliable molecular procedure which facilitates, via genetic selection, the differentiation of human embryonic stem cells into an essentially pure population of lung epithelial cells,” said Wetsel, noting the procedure also can be used to create other types of highly-specialized cells.

Scientists at the IMM used the in vitro method to create lung epithelial cells known as alveolar epithelial type II. The cells were derived from a human embryonic stem cell line approved by the National Institutes of Health (NIH).

The method involves the use of protein markers under the control of cell-specific promoters to convert undifferentiated human embryonic stem cells into highly-specialized cells. The human embryonic stem cells were cultured on specially coated dishes and transfected with a lung epithelial gene regulator of a drug selection gene.

“It is a general technology for developing select cells from human embryonic stem cells,” said C. Thomas Caskey, M.D., the IMM’s chief operating officer, director and CEO-elect. “The technology has allowed us to develop a platform that could potentially be useful in the development of spinal cord cells, heart cells, nerve cells and others.”

James T. Willerson, M.D., president of the UT Health Science Center at Houston, said " I believe this is an important development by the Wetsel laboratory at the IMM. I look forward to seeing its transitional impact."

Alveolar epithelial type II cells are called “the stem cells of the lungs” because of their versatility and many important functions. They produce proteins including surfactant that inflates lungs. They also make other cells lining the inner lung. “They regulate lung fluids and oxygen levels,” Wetsel said.

The cells are part of the tiny air sacs lining the lower airways known as alveoli. Tissue thin, they transfer oxygen into the blood and remove carbon dioxide. If the walls of the hundreds of millions of alveolus in a pair of lungs could be spread out and placed side by side, they would cover the floor of a classroom.

According to Wetsel, transplantable alveolar epithelial type II cells can be explored as treatments for pulmonary genetic diseases, acquired lung disease, as well as lung trauma caused by car accidents, gunshot wounds and sports injuries. “These are the cells that can potentially be used for regenerative lung repair,” he said.

Hereditary lung disorders most likely to benefit from transplantation of alveolar epithelial type II cells include respiratory distress syndrome of the newborn, alpha-1 related emphysema and cystic fibrosis, Wetsel believes. “All three of these diseases are caused by single gene defects and therefore have been logical candidates for gene therapy,” Wetsel said.

Respiratory distress syndrome of the newborn, a condition affecting premature infants less than 37 weeks of age, may be caused by a genetic mutation triggering a surfactant shortage. Likewise, alpha-1 related emphysema, a condition affecting 100,000 Americans, results from an inherited deficiency of alpha-1 antitrypsin. Further, cystic fibrosis is the second most common childhood onset inherited disorder in the United States.

Transplantable alveolar epithelial type II cells may also one day be helpful in the treatment of other lung diseases including chronic obstructive pulmonary disease (COPD), the fourth leading cause of death in the United States, claiming the lives of 122,283 Americans in 2003, and asthma, Wetsel said.

Still years away from their use in regenerative medicine, Wetsel said the next step involves research trials with mice.

Other IMM investigators participating in the study included David L. Haviland, Ph.D., assistant professor in the Center for Immunology and Autoimmune Diseases, and Eva Zsigmond, Ph.D., assistant professor and associate director of the IMM’s Laboratory for Developmental Biology.

Funding for the study of the NIH-approved human embryonic stem cell line was provided by Houston philanthropists Clive and Nancy Runnells.

The most comprehensive academic health center in the Southwest, the UT Health Science Center at Houston is home to six schools devoted to medicine, nursing, public health, dentistry, health informatics and graduate studies in biomedical science. In addition to the IMM, other components are the UT Harris County Psychiatric Center and the Mental Sciences Institute. The UT Health Science Center at Houston, founded in 1972, is part of the University of Texas System. It is a state-supported health institution whose state funding is supplemented by competitive research grants, patient fees and private philanthropy.

Rob Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

Further reports about: Embryonic IMM Wetsel alveolar embryonic stem embryonic stem cell epithelial

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>