Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows snails aren’t as slow as we think

28.02.2007
On the surface snails don’t come across as the brightest in the animal kingdom, but new research at the University of Sunderland suggests they are not as slow as they look.

The university’s Professor Mark Davies has been studying snails for the past ten years and his latest research has confirmed something he has believed for quite some time.

He and masters student Janine Blackwell have been studying marine snails off the coast of South Tyneside in the belief that they use each other’s mucus trails in order to save vital energy – and they seem to be right.

Snails use a third of their energy creating mucus trails in order to move around, mostly to find food and a partner.

... more about:
»Energy »mucus

Prof Davies has found that by using existing trails these particular snails, and more than likely all snails, have to create only a fraction of the mucus needed to make a new trail.

One of the obvious benefits is that snails living in environments where food is scarce may be able to survive as they do not need as much energy to create trails.

While biologists have long believed that this could be the case, this is the first time it has been proven.

His findings will appear in the journal Proceedings of the Royal Society Biological Sciences, which comes out tomorrow (Wednesday, February 28).

Prof Davies and Ms Balckwell spent several months researching the snails and measuring the thickness of their trails.

He said: “Snails expend a lot of energy, probably one third, creating mucus. This process is very taxing indeed – much more so than walking, swimming or flying.

“The fact that they can make savings has a knock on effect in as much as they have more energy to do other things like reproduce.

“It took a long time to measure the mucus and it was very difficult, but after several unsuccessful attempts we managed it.

“What we found was that these trails have a convex cross section. Once a second snail went down the trail we expected the trail to be twice as thick but it wasn’t – it was a lot less.

“If it was a fairly new trail the snails didn’t have to lay much mucus, but if it was a weathered trail then they had to lay more.

“How it knows we have no idea but the animal seems to be recreating the profile of the trail as originally laid. However, the energy it saves is quite dramatic.

“They don’t follow trails all the time as they would all be following each other. We don’t know yet how far they are following them.

“While we researched marine snails, the chances are that all species of snails will follow trails because of the energy they will save.

“This is a very good start to finding out more about the lives of snails.”

Tony Kerr | alfa
Further information:
http://www.sunderland.ac.uk/caffairs/septhm.htm

Further reports about: Energy mucus

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>