Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA study helps explain unique diversity among Melanesians

28.02.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Small populations of Melanesians — among the most genetically diverse people on the planet — have significant differences in their mitochondrial DNA that can be linked to where they live, the size of their home island and the language they speak, according to a study being published in the new online journal, Public Library of Science ONE (http://www.plosone.org).

The study, “Melanesian mtDNA complexity,” was lead by Jonathan Friedlaender, emeritus professor of anthropology at Temple University and appears in the Feb. 28 issue.

Friedlaender and his collaborators from Binghamton University, the Institute for Medical research in New Guinea and the University of Pennsylvania, examined mitochondrial DNA sequences from 32 diverse populations on four Melanesian islands, an island chain north and northeast of Australia that includes Fiji, New Caledonia, Vanuatu, the Solomon Islands, and New Guinea. The islands that were intensively covered were Bougainville, New Ireland, New Britain and New Guinea.

... more about:
»Friedlaender »Guinea »Melanesian »PLoS

“Mitochondrial DNA has been a focus of analysis for about 15 years,” says Friedlaender. “It is very interesting in that it is strictly maternally inherited as a block of DNA, so it really allows for the construction of a very deep family tree on the maternal side as new mutations accumulate over the generations on ancestral genetic backgrounds.

“In this part of the world, the genealogy extends back more than 35,000 years, when Neanderthals still occupied Europe,” he adds. “These island groups were isolated at the edge of the human species range for an incredible length of time, not quite out in the middle of the Pacific, but beyond Australia and New Guinea. During this time they developed this pattern of DNA diversity that is really quite extraordinary, and includes many genetic variants that are unknown elsewhere, that can be tied to specific islands and even specific populations there. Others suggest very ancient links to Australian Aborigines and New Guinea highlanders.”

Friedlaender also says that the study gives a different perspective on the notion of the “apparent distinctions between humans from different continents, often called racial differences. In this part of the Pacific, there are big differences between groups just from one island to the next — one might have to name five or six new races on this basis, if one were so inclined. Human racial distinctions don’t amount to much.”

The study was funded by grants from the National Science Foundation, the Wenner-Gren Foundation for Anthropological Research, the National Geographic Society Exploration Fund and the Penn Faculty Research Fund.

CONTACT:
Jonathan Friedlaender
Tel: +1 215 204 7476
Mob: +1 215 520 0146
jfriedla@temple.edu
Citation: Friedlaender JS, Friedlaender FR, Hodgson JA, Stoltz M, Koki G, et al (2007) Melanesian mtDNA Complexity. PLoS ONE 2(2): e248.doi:10.1371/journal.pone.0000248

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000248

Further reports about: Friedlaender Guinea Melanesian PLoS

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>