Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening and Closing the Genome: Newly Identified Enzyme Orchestrates Access to Genes for Transcription

23.02.2007
At any given time, most of the roughly 30,000 genes that constitute the human genome are inactive, or repressed, closed to the cellular machinery that transcribes genes into the proteins of the body. In an average cell, only about one in ten genes is active, or expressed, at any given moment, with its DNA open to the cell’s transcriptional machinery.

A dynamic cast of gatekeeper enzymes controls this access to the DNA, adding and removing particular molecules to open or close the genome to transcription as needed. Fully explicating the complex interplay among these enzymes and the molecules they manage has been a primary goal for scientists seeking to understand the mechanisms governing gene control. These mechanisms are vital for health – when they go wrong, diseases like cancer can result.

In study published February 22 in Cell, researchers at the Wistar Institute, Philadelphia (USA) identifiy an important new player in this gene-control system, an enzyme responsible for removing certain molecules, or marks, involved in opening or closing chromatin, the material that makes up chromosomes. The activity of this enzyme thought to be widespread in the genome, likely affecting many genes.

“This enzyme removes methyl groups on lysine 4 of histone H3 which is required to open the chromatin for gene expression, and therefore this enzyme maintains a repressed state of gene expression,” says Ramin Shiekhattar, Ph.D., professor at The Wistar Institute and senior author on the Cell study. Currently, Shiekhattar is also an ICREA professor at the Centre for Genomic Regulation in Barcelona, Spain. “When the enzyme is not present, however, the marks remain in place, and the chromatin is open for transcription.”

... more about:
»Chromatin »Histone »Shiekhattar »enzyme

The enzyme, called JARID1d, is the first identified member of a new family of enzymes that removes trimethylation at histone H3 lysine 4, a critical components of open chromatin. In mammalian genomes, trimethyl groups at this location have been known to be associated with gene activation. Shiekhattar and his team hypothesized the existence of an enzyme that would remove these trimethyl groups.

“We and others had wondered whether there might not be an enzyme able to remove these trimethyl marks,” says Shiekhattar. “Such an enzyme would have the effect of setting the genes back to their original repressed state.”

An important aspect of Shiekattar’s and colleagues’ work is their demonstration of the intimate connection of JARID1d and Ring6a, a polycomb-like protein. Indeed, they show that Ring6a has the ability to regulate the enzymatic activity of the histone demethylase in vitro as well as in vivo. These results extend the role of transcriptional inhibitory polycomb complexes through their physical and functional link with histone demethylase enzymes.

The research was supported by grants from the National Institutes of Health and the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Chromatin Histone Shiekhattar enzyme

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>