Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening and Closing the Genome: Newly Identified Enzyme Orchestrates Access to Genes for Transcription

23.02.2007
At any given time, most of the roughly 30,000 genes that constitute the human genome are inactive, or repressed, closed to the cellular machinery that transcribes genes into the proteins of the body. In an average cell, only about one in ten genes is active, or expressed, at any given moment, with its DNA open to the cell’s transcriptional machinery.

A dynamic cast of gatekeeper enzymes controls this access to the DNA, adding and removing particular molecules to open or close the genome to transcription as needed. Fully explicating the complex interplay among these enzymes and the molecules they manage has been a primary goal for scientists seeking to understand the mechanisms governing gene control. These mechanisms are vital for health – when they go wrong, diseases like cancer can result.

In study published February 22 in Cell, researchers at the Wistar Institute, Philadelphia (USA) identifiy an important new player in this gene-control system, an enzyme responsible for removing certain molecules, or marks, involved in opening or closing chromatin, the material that makes up chromosomes. The activity of this enzyme thought to be widespread in the genome, likely affecting many genes.

“This enzyme removes methyl groups on lysine 4 of histone H3 which is required to open the chromatin for gene expression, and therefore this enzyme maintains a repressed state of gene expression,” says Ramin Shiekhattar, Ph.D., professor at The Wistar Institute and senior author on the Cell study. Currently, Shiekhattar is also an ICREA professor at the Centre for Genomic Regulation in Barcelona, Spain. “When the enzyme is not present, however, the marks remain in place, and the chromatin is open for transcription.”

... more about:
»Chromatin »Histone »Shiekhattar »enzyme

The enzyme, called JARID1d, is the first identified member of a new family of enzymes that removes trimethylation at histone H3 lysine 4, a critical components of open chromatin. In mammalian genomes, trimethyl groups at this location have been known to be associated with gene activation. Shiekhattar and his team hypothesized the existence of an enzyme that would remove these trimethyl groups.

“We and others had wondered whether there might not be an enzyme able to remove these trimethyl marks,” says Shiekhattar. “Such an enzyme would have the effect of setting the genes back to their original repressed state.”

An important aspect of Shiekattar’s and colleagues’ work is their demonstration of the intimate connection of JARID1d and Ring6a, a polycomb-like protein. Indeed, they show that Ring6a has the ability to regulate the enzymatic activity of the histone demethylase in vitro as well as in vivo. These results extend the role of transcriptional inhibitory polycomb complexes through their physical and functional link with histone demethylase enzymes.

The research was supported by grants from the National Institutes of Health and the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Chromatin Histone Shiekhattar enzyme

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>