Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies identify DNA regions linked to nicotine dependence

16.02.2007
Understanding genetic factors could contribute to better smoking-cessation therapies

Americans are bombarded with antismoking messages, yet at least 65 million of us continue to light up. Genetic factors play an important role in this continuing addiction to cigarettes, suggest scientists at Washington University School of Medicine in St. Louis.

In two studies in the January 2007 issue of Human Molecular Genetics, the scientists show that certain genetic variations can influence smoking behaviors and contribute to a person's risk for nicotine dependence.

The smoking-related genes identified normally facilitate communication between nerve cells in the brain. One gene in particular, the alpha-5 nicotinic cholinergic receptor (CHRNA5) gene, was a very strong indicator of risk for nicotine dependence. Individuals with a specific variation in the gene seemed to have a two-fold increase of developing nicotine dependence once exposed to cigarette smoking. CHRNA5 is from a class of receptors that plays a role in dopamine pathways in the brain, which are linked to a person's experience of pleasure.

The researchers also identified genes related to gamma aminobutyric acid (GABA) receptors, another set of proteins vital to nerve cell function. Both GABA and nicotinic receptors had been suspected of involvement in nicotine addiction, but these findings strengthen those suspicions.

The studies also identified a gene not previously known to be involved with nicotine dependence. Called the Neurexin 1 (NRXN1) gene, it helps regulate the balance between excitatory mechanisms — those that increase communication between nerve cells — and inhibitory mechanisms — those that slow firing between nerve cells.

"An imbalance between excitatory and inhibitory activity in the brain may predispose people to addiction, such as alcoholism, drug dependence or nicotine dependence," says Laura Jean Bierut, M.D., associate professor of psychiatry and principal investigator of both studies. "The Neurexin gene we've identified is really a key factor in the balance between inhibition and excitatory activity in neurons."

Bierut suspects a large number of genes are involved in nicotine dependence, and she says understanding how they work may make it possible to develop new treatments for smoking cessation.

The research team analyzed data from almost 2,000 participants in two ongoing studies. One, called the Collaborative Genetic Study of Nicotine Dependence, is a U.S.-based sample that includes both addicted smokers and "social" smokers from St. Louis, Minneapolis and Detroit. The other is an Australian study of smokers of European ancestry called the Nicotine Addiction Genetics study.

The scientists combined two approaches for analyzing genetic information. One approach scanned the entire human genome for suspicious areas of DNA while the second approach closely examined specific target genes.

"The combination of these two approaches represents the most powerful and extensive study on nicotine dependence to date and is an important step in a large-scale, genetic examination of nicotine dependence," says Elias A. Zerhouni, M.D., the director of the National Institutes of Health, which funded the studies. "As more genomic variations are discovered that are associated with substance abuse, we can better understand addictive disorders."

The researchers identified an area of DNA variation that seems to alter the function of a nicotinic receptor protein. That small variation makes a big difference in risk for nicotine dependence.

Current drug treatments for nicotine dependence continue to be only marginally successful, and Bierut believes using information about genetic traits to tailor medications to individuals could make them significantly more effective. "The type of variant you have at this particular receptor — the alpha-5 nicotinic receptor — may actually predict whether or not you will do well on nicotine replacement therapy," she says.

Proving that, however, will require more studies, and the researchers have launched a new project to study DNA in a sample of both low-level smokers and heavier smokers. They are also working with colleagues at the University of Colorado to develop a mouse with the same variant in the CHRNA5 gene that seems to increase the risk of nicotine dependence. That would allow them to compare the effects of nicotine in mice with and without the genetic variation.

Tobacco use, primarily through cigarette smoking, is a leading cause of death and disability. Each year, approximately 440,000 Americans die of smoking-related illnesses, and worldwide, deaths attributed to tobacco total about 5 million. Although the prevalence of cigarette smoking has decreased over the last 30 years in the United States, the rate of smoking cessation among adults has been slowing since the mid-1990s. In addition, adolescents continue to start smoking, with 21 percent of high school students reporting they have smoked a cigarette sometime in the last month.

More than half of the people who smoke at least five packs in their lives — 100 cigarettes — go on to become nicotine dependent. But about 15 percent of people who smoke that amount won't develop any symptoms of nicotine dependence. "These people can give up smoking at any time," Bierut says. "They have no cravings. They smoke socially."

Earlier research suggested that smoking behaviors tend to cluster in families, and large studies of twins previously concluded that the clustering is partly related to genetic factors. An important aspect of these latest studies is that rather than comparing smokers to non-smokers, the researchers compared addicted smokers to non-addicted smokers.

"You're not at risk for nicotine dependence unless you've smoked," Bierut says. "You have to study smokers to identify the people who are at risk of becoming nicotine dependent versus those who smoke but can give it up at any time."

Bierut says it's important to find genetic factors related to nicotine dependence because so much of the population continues to smoke, in spite of the overwhelming evidence that it's harmful. And she believes some of the genes her research team has identified will help scientists to develop therapies for smokers who just can't seem to quit with existing treatments.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Bierut DNA cigarette dependence nicotine nicotine dependence nicotinic

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>