Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for regenerative medicine

16.02.2007
Hematopoietic reconstitution with uniparental stem cells

In the February 15th issue of G&D, Dr. K. John McLaughlin and colleagues report on their success in using uniparental embryonic stem cells to replace blood stem cells in mice. Uniparental embryonic stem cells are an appealing alternative source of patient-derived embryonic stem cells, as they have several advantages over embryonic stem cell lines generated by somatic cell nuclear transfer (also known as therapeutic cloning).

Normal mammalian embryos inherit one set of chromosomes from the mother, and one set from the father. Embryos that inherit both sets of chromosomes from the same parent are not viable. They can, however, generate "uniparental" embryonic stem cell lines. Uniparental embryos with two maternal sets of chromosomes are known as parthenogenetic. These embryos have been considered a potential source of embryonic stem cell derived tissues for transplantation into the female from which they were derived.

This study shows for the first time that parthenogenetic blood cells can replace those of an immunocompromised adult mouse. McLaughlin and colleagues also show that this is also possible using embryonic stem cells where both genomes are solely derived from sperm of one male (androgenetic), adding fertile males to the potential patient pool.

Since uniparental ES cells are not derived from viable embryos, their harvesting and use sidesteps many of the ethical concerns that plague traditional ES cell therapies. However, uniparental ES cell research faces the biological hurdle of genomic imprinting, in which specific gene expression patterns are dictated by the parental origin. Uniparental cells only have the imprinting marks for one parental type (or "from one parent") with unknown consequences if harvested and transplanted into adults.

Previous work has shown that uniparental ES cells have only limited ability to contribute to fetal and postnatal development in chimeric animals, with androgenetically-derived uniparental ES cell chimeras displaying abnormal phenotypes and increased lethality. In their current paper, Dr. McLaughlin and colleagues tested the functionality of uniparental ES cells in adult tissues.

"It has been known for over a decade that uniparental cells had some capacity to form tissues in vitro and in vivo but it was questionable if these embryonic stem cells could generate transplantable material that would proliferate and replace tissues in an adult."

The researchers took a two-step approach: First they injected uniparental ES cells into wild-type blastocyts to generate chimeric animals; then they harvested these chimeric fetal livers for transplant into lethally irradiated hosts. The scientists found that uniparental ES cells, regardless of parent-of-origin, were able to functionally reconstitute the entire hematopoietic system of adult mice. Furthermore, the scientists were also able to grow progenitor blood cells in culture from uniparental ES cells, and upon transplant into irradiated adult mice, show that these cells contribute, long-term, to the function of their hematopoietic system.

One issue in using uniparental ES cells for tissue transplants is their durability and safety. McLaughlin's group were able to maintain animals for over 12 months with entirely uniparental blood and were able to rescue irradiated mice with bone marrow transplants from these animals. This unambiguously proves that the transplanted uniparental cells could produce hematopoietic stem cells.

"The ability of the "sperm derived" androgenetic cells to replace adult blood was totally unexpected based on what occurs with these cells during development. The male derived androgenetic cells were at least as effective as the maternal derived cells."

Dr. McLaughlin's new paper expands the horizons for regenerative medicine, not only by demonstrating that uniparental stem cells can form adult-transplantable progenitor cells in cell culture, but also by illustrating the potential utility of androgenetic, as well as parthenogenetic ES cells.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>