Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for regenerative medicine

16.02.2007
Hematopoietic reconstitution with uniparental stem cells

In the February 15th issue of G&D, Dr. K. John McLaughlin and colleagues report on their success in using uniparental embryonic stem cells to replace blood stem cells in mice. Uniparental embryonic stem cells are an appealing alternative source of patient-derived embryonic stem cells, as they have several advantages over embryonic stem cell lines generated by somatic cell nuclear transfer (also known as therapeutic cloning).

Normal mammalian embryos inherit one set of chromosomes from the mother, and one set from the father. Embryos that inherit both sets of chromosomes from the same parent are not viable. They can, however, generate "uniparental" embryonic stem cell lines. Uniparental embryos with two maternal sets of chromosomes are known as parthenogenetic. These embryos have been considered a potential source of embryonic stem cell derived tissues for transplantation into the female from which they were derived.

This study shows for the first time that parthenogenetic blood cells can replace those of an immunocompromised adult mouse. McLaughlin and colleagues also show that this is also possible using embryonic stem cells where both genomes are solely derived from sperm of one male (androgenetic), adding fertile males to the potential patient pool.

Since uniparental ES cells are not derived from viable embryos, their harvesting and use sidesteps many of the ethical concerns that plague traditional ES cell therapies. However, uniparental ES cell research faces the biological hurdle of genomic imprinting, in which specific gene expression patterns are dictated by the parental origin. Uniparental cells only have the imprinting marks for one parental type (or "from one parent") with unknown consequences if harvested and transplanted into adults.

Previous work has shown that uniparental ES cells have only limited ability to contribute to fetal and postnatal development in chimeric animals, with androgenetically-derived uniparental ES cell chimeras displaying abnormal phenotypes and increased lethality. In their current paper, Dr. McLaughlin and colleagues tested the functionality of uniparental ES cells in adult tissues.

"It has been known for over a decade that uniparental cells had some capacity to form tissues in vitro and in vivo but it was questionable if these embryonic stem cells could generate transplantable material that would proliferate and replace tissues in an adult."

The researchers took a two-step approach: First they injected uniparental ES cells into wild-type blastocyts to generate chimeric animals; then they harvested these chimeric fetal livers for transplant into lethally irradiated hosts. The scientists found that uniparental ES cells, regardless of parent-of-origin, were able to functionally reconstitute the entire hematopoietic system of adult mice. Furthermore, the scientists were also able to grow progenitor blood cells in culture from uniparental ES cells, and upon transplant into irradiated adult mice, show that these cells contribute, long-term, to the function of their hematopoietic system.

One issue in using uniparental ES cells for tissue transplants is their durability and safety. McLaughlin's group were able to maintain animals for over 12 months with entirely uniparental blood and were able to rescue irradiated mice with bone marrow transplants from these animals. This unambiguously proves that the transplanted uniparental cells could produce hematopoietic stem cells.

"The ability of the "sperm derived" androgenetic cells to replace adult blood was totally unexpected based on what occurs with these cells during development. The male derived androgenetic cells were at least as effective as the maternal derived cells."

Dr. McLaughlin's new paper expands the horizons for regenerative medicine, not only by demonstrating that uniparental stem cells can form adult-transplantable progenitor cells in cell culture, but also by illustrating the potential utility of androgenetic, as well as parthenogenetic ES cells.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>