Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein discovery targets antibiotic-resistant bacteria

Model could be used in new treatments for food poisoning, typhoid

A new type of protein discovered by Queen’s University researchers may be useful in developing treatments for antibiotic-resistant bacteria, such as those that cause food poisoning and typhoid.

By solving the structure and activity of the protein – called YihE or RdoA – a team of professors and students from the departments of Biochemistry and Microbiology & Immunology has opened up possibilities for new drug development.

“Our group is the first to solve the structure and to begin to understand the function of this particular protein,” says Dr. Nancy Martin (Microbiology & Immunology), who coordinated the study with Dr. Zongchao Jia (Biochemistry). “It turns out to be a potentially good target in a wide range of bacteria that cause infectious diseases.” Because of the increasing number of antibiotic-resistant strains of many different types of bacteria, such as salmonella, she notes, new approaches to antibiotic therapy are needed.

The Queen’s findings are published in the on-line edition of the journal Molecular Microbiology. Also on the team, from Biochemistry, are PhD student Jimin Zheng and post-doctoral fellow Vinay Singh; and Microbiology & Immunology Master’s student Chunhua He.

The group is studying sensory pathways used by bacteria that enter our bodies and move from the stomach into the gastro-intestinal tract. “If we can block the sensory pathway, then the bacteria can’t adapt to that change in their environment, and won’t be able to infect,” says Dr. Martin.

In North America, the people treated for food poisoning with drugs tend to be elderly or “immune compromised” where there is a need for antibiotics to clear the infection. Since the organism that causes salmonellosis is related to that responsible for typhoid fever – a huge problem in less developed countries – the model being developed at Queen’s could potentially be a target for treating typhoid as well. The underlying goal is to control, if not clear, the infection.

“It’s basic science that we are doing, but we’re using that as a foundation for trying to develop approaches that will have positive impacts on human health,” says Dr. Martin.

Nancy Dorrance | EurekAlert!
Further information:

Further reports about: Antibiotic-Resistant microbiology typhoid

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>