Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cell transplants mature into neurons and make contacts in rat spinal cord

15.02.2007
Human nerve stem cells transplanted into rats' damaged spinal cords have survived, grown and in some cases connected with the rats' own spinal cord cells in a Johns Hopkins laboratory, overturning the long-held notion that spinal cords won't allow nerve repair.

A report on the experiments will be published online this week at PLoS Medicine and "establishes a new doctrine for regenerative neuroscience," says Vassilis Koliatsos, M.D., associate professor of neuropathology at Johns Hopkins. "The spinal cord, a part of the nervous system that is thought of as incapable of repairing itself, can support the development of transplanted cells," he added.

"We don't yet know whether the connections we've seen can transmit nerve signals to the degree that a rat could be made to walk again," says Koliatsos, "We're still in the proof of concept stage, but we're making progress and we're encouraged."

In their experiments, the scientists gave anesthetized rats a range of spinal cord injuries to lesion or kill motor neurons or performed sham surgeries. They varied experimental conditions to see if the presence or absence of spinal cord lesions had an effect on the survival and maturation of human stem cell grafts. Two weeks after lesion or sham surgery, they injected human neural stem cells into the left side of each rat's spinal cord.

... more about:
»spinal »transplanted

After six months, the team found more than three times the number of human cells than they injected in the damaged cords, meaning the transplanted cells not only survived but divided at least twice to form more cells. Moreover, says Koliatsos, the cells not only grew in the area around the original injection, but also migrated over a much larger spinal cord territory.

Three months after injection, the researchers found evidence that some of the transplanted cells developed into support cells rather than nerve cells, while the majority became mature nerve cells. High-powered microscopic examination showed that these nerve cells appear to have made contacts with the rat's own spinal cord cells.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: spinal transplanted

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>