Joint university collaboration boosts research into human vision

Motion-defined transparency is a common occurrence in the natural environment where multiple directions of motion occur in the same spatial region, for example when one sees fish in a fast flowing stream, and is a phenomenon that has invited much scientific discussion.

The research, a joint collaboration between Dr William Curran at Queen’s, Dr Paul B Hibbard of the University of St Andrews and Professor Alan Johnston of University College London, examined whether the human visual system detects transparently moving surfaces simultaneously or whether the directions are processed in a serial manner, and was published in a paper by the Royal Society on 7 February.

Previous research had purported to show that the human brain processes the different motion directions in a transparent scene in a serial manner. These findings were based on experiments in which the transparent motions were presented in the same depth plane (ie were the same distance from the viewer). The team’s research challenged these previous findings by testing people’s ability to detect the direction of transparently moving surfaces when the surfaces are placed at different depths. Their results provided evidence that the human brain does, in fact, process transparent motion directions simultaneously.

Speaking about the work, Dr Curran said, “This adds another small piece to the incredibly complex jigsaw which is the human visual system. It is also relevant to researchers who wish to develop artificial visual systems that ‘see’ in the same way as humans do.”

The research paper can be viewed on the Royal Society website at http://www.pubs.royalsoc.ac.uk/

Media Contact

Lisa Mitchell alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors