Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forensic photography brings color back to ancient textiles

09.02.2007
Archaeologists are now turning to forensic crime lab techniques to hunt for dyes, paint, and other decoration in prehistoric textiles.

Although ancient fabrics can offer clues about prehistoric cultures, often their colors are faded, patterns dissolved, and fibers crumbling. Forensic photography can be used as an inexpensive and non-destructive tool to analyze these artifacts more efficiently, according to new Ohio State University research.

Forensic photography helps researchers collect information from fragile artifacts before using expensive chemical tests, which cause damage during material sampling. The forensic method also helps researchers narrow areas to sample for colorants, ultimately reducing artifact damage and testing costs.

“Normally when you dig artifacts out of the ground, especially stone or ceramic ones, you wash them and they look sexy. But you can't do that with textiles,” said Christel Baldia, Ohio State University doctoral graduate in textiles and clothing. Baldia conducted the study with Kathryn Jakes, professor of textile sciences in the College of Education and Human Ecology at Ohio State, and published their findings in the April, 2007 issue of Journal of Archaeological Science.

... more about:
»Baldia »Jakes »Prehistoric »forensic »sampling

Putting forensic photography to the test, Baldia and Jakes examined textiles from burial mounds built by the Hopewell, a prehistoric Native American people that flourished about 1600 years ago. In their study, the two investigators focused on pieces of fabric recovered from Ohio 's Seip burial mounds in southern Ohio. Experts believe some of the pieces belonged to a canopy of fabric that arched over the remains buried inside the mounds.

“Textiles often come out looking like brown rags, yet Native American dress is described as colorful by early travelers or pioneers.” Baldia said. “So we asked ourselves: ‘What can we do to better examine ancient textiles for colors we no longer see?'”

Forensic scientists use different light sources, such as ultraviolet and infrared, to visualize stains or fingerprints on clothing, but Jakes said no one has used those methods in looking at ancient textiles. “In a way, it's like shopping for clothes,” she said. “You need to see the clothing in different lighting—a fabric looks like it matches in the store's lighting, but when you bring it into sunlight the colors change.”

Under non-visible light, many pigments and dyes absorb light energy but release it in different wavelengths, or colors, of light. This behavior is called fluorescence, and it can reveal faded or deteriorated artwork in textiles. Fluorescence normally helps forensic investigators find blood stains, fingerprints, body oils, and other evidence where there appears to be none (such stains can be visible even after washing thoroughly).

To find fluorescent patterns in textiles, Baldia and Jakes simulated daylight, ultraviolet light (between 254 nm and 365 nm), and infrared light (between 800 nm and 900 nm), then photographed the artifacts with special film and light-filtering camera equipment. The photographs ultimately helped them see undetected patterns and markings in some of the artifacts they examined.

“The materials we examined from Hopewell burial mounds show gradations of color under different light sources,” Jakes said. “When artifacts have non-random changes in color like that, it indicates to us that there has to be dye or pigment. That's significant for ancient textiles because it reveals technologies prehistoric Native peoples were capable of.”

When archaeologists are curious about an ancient fabric's colors, they often sample the material at random and cause damage to it. Photographing artifacts with Baldia and Jakes' method before sampling, however, helps archaeologists build a focused game plan for sampling that minimizes harm to the material.

“The code of ethics from the American Institute of Conservation is ‘do no harm',” Jakes said. “For the artifact to stick around for as long possible, you have to be as minimally destructive in your sampling as possible.”

Baldia said sampling ancient fabric always requires removing a fiber or piece of yarn. “People essentially do this randomly, but forensic photography helps minimize damage by enabling us to sample strategically,” Baldia said. If archaeologists see a pattern in forensic photographs, she said, then the area most likely contains dye or paint—and focusing on such areas ultimately provides more information about ancient civilizations while cutting research costs.

Baldia explained that she and Jakes got the idea to photographically analyze textiles from museum painting conservators.

“Art museums use it to see if a painting has been painted over, if it's a forgery, and so on,” Baldia said. “We thought: ‘why aren't we doing this with ancient textiles?' Just like other art, fabrics are dyed and painted, and this is an inexpensive way to gather important information.”

The researchers hope their technique will become standard practice for analyzing textiles and even other organic artifacts, like wood or leather.

“I think this will help spur a lot of new findings,” Jakes said. “It's a great way to start looking at the stuff in the attics of museums across the country in a new way.”

Funding for the project was granted by the Ohio State University Graduate School and textile artifacts were provided by the Ohio Historical Society in Columbus .

Kathryn Jakes | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Baldia Jakes Prehistoric forensic sampling

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>