Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forensic photography brings color back to ancient textiles

09.02.2007
Archaeologists are now turning to forensic crime lab techniques to hunt for dyes, paint, and other decoration in prehistoric textiles.

Although ancient fabrics can offer clues about prehistoric cultures, often their colors are faded, patterns dissolved, and fibers crumbling. Forensic photography can be used as an inexpensive and non-destructive tool to analyze these artifacts more efficiently, according to new Ohio State University research.

Forensic photography helps researchers collect information from fragile artifacts before using expensive chemical tests, which cause damage during material sampling. The forensic method also helps researchers narrow areas to sample for colorants, ultimately reducing artifact damage and testing costs.

“Normally when you dig artifacts out of the ground, especially stone or ceramic ones, you wash them and they look sexy. But you can't do that with textiles,” said Christel Baldia, Ohio State University doctoral graduate in textiles and clothing. Baldia conducted the study with Kathryn Jakes, professor of textile sciences in the College of Education and Human Ecology at Ohio State, and published their findings in the April, 2007 issue of Journal of Archaeological Science.

... more about:
»Baldia »Jakes »Prehistoric »forensic »sampling

Putting forensic photography to the test, Baldia and Jakes examined textiles from burial mounds built by the Hopewell, a prehistoric Native American people that flourished about 1600 years ago. In their study, the two investigators focused on pieces of fabric recovered from Ohio 's Seip burial mounds in southern Ohio. Experts believe some of the pieces belonged to a canopy of fabric that arched over the remains buried inside the mounds.

“Textiles often come out looking like brown rags, yet Native American dress is described as colorful by early travelers or pioneers.” Baldia said. “So we asked ourselves: ‘What can we do to better examine ancient textiles for colors we no longer see?'”

Forensic scientists use different light sources, such as ultraviolet and infrared, to visualize stains or fingerprints on clothing, but Jakes said no one has used those methods in looking at ancient textiles. “In a way, it's like shopping for clothes,” she said. “You need to see the clothing in different lighting—a fabric looks like it matches in the store's lighting, but when you bring it into sunlight the colors change.”

Under non-visible light, many pigments and dyes absorb light energy but release it in different wavelengths, or colors, of light. This behavior is called fluorescence, and it can reveal faded or deteriorated artwork in textiles. Fluorescence normally helps forensic investigators find blood stains, fingerprints, body oils, and other evidence where there appears to be none (such stains can be visible even after washing thoroughly).

To find fluorescent patterns in textiles, Baldia and Jakes simulated daylight, ultraviolet light (between 254 nm and 365 nm), and infrared light (between 800 nm and 900 nm), then photographed the artifacts with special film and light-filtering camera equipment. The photographs ultimately helped them see undetected patterns and markings in some of the artifacts they examined.

“The materials we examined from Hopewell burial mounds show gradations of color under different light sources,” Jakes said. “When artifacts have non-random changes in color like that, it indicates to us that there has to be dye or pigment. That's significant for ancient textiles because it reveals technologies prehistoric Native peoples were capable of.”

When archaeologists are curious about an ancient fabric's colors, they often sample the material at random and cause damage to it. Photographing artifacts with Baldia and Jakes' method before sampling, however, helps archaeologists build a focused game plan for sampling that minimizes harm to the material.

“The code of ethics from the American Institute of Conservation is ‘do no harm',” Jakes said. “For the artifact to stick around for as long possible, you have to be as minimally destructive in your sampling as possible.”

Baldia said sampling ancient fabric always requires removing a fiber or piece of yarn. “People essentially do this randomly, but forensic photography helps minimize damage by enabling us to sample strategically,” Baldia said. If archaeologists see a pattern in forensic photographs, she said, then the area most likely contains dye or paint—and focusing on such areas ultimately provides more information about ancient civilizations while cutting research costs.

Baldia explained that she and Jakes got the idea to photographically analyze textiles from museum painting conservators.

“Art museums use it to see if a painting has been painted over, if it's a forgery, and so on,” Baldia said. “We thought: ‘why aren't we doing this with ancient textiles?' Just like other art, fabrics are dyed and painted, and this is an inexpensive way to gather important information.”

The researchers hope their technique will become standard practice for analyzing textiles and even other organic artifacts, like wood or leather.

“I think this will help spur a lot of new findings,” Jakes said. “It's a great way to start looking at the stuff in the attics of museums across the country in a new way.”

Funding for the project was granted by the Ohio State University Graduate School and textile artifacts were provided by the Ohio Historical Society in Columbus .

Kathryn Jakes | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Baldia Jakes Prehistoric forensic sampling

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>