Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Horse genome assembled

09.02.2007
Data on equine freely available to researchers worldwide

The first draft of the horse genome sequence has been deposited in public databases and is freely available for use by biomedical and veterinary researchers around the globe, leaders of the international Horse Genome Sequencing Project announced today.

The $15 million effort to sequence the approximately 2.7 billion DNA base pairs in the genome of the horse (Equus caballus) was funded by the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH). A team led by Kerstin Lindblad-Toh, Ph.D., at the Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, in Cambridge, Mass., carried out the sequencing and assembly of the horse genome.

Approximately 300,000 Bacterial Artificial Chromosome (BAC) end sequences, which provide continuity when assembling a large genome sequence, were contributed to the horse sequencing project by Ottmar Distl, D.V.M., Ph.D. and Tosso Leeb, Ph.D., from the University of Veterinary Medicine, in Hanover, Germany and Helmut Blöcker, Ph.D., from the Helmholtz Centre for Infection Research in Braunschweig, Germany. Production of the BAC end sequences was funded by the Volkswagen Foundation and the State of Lower Saxony.

... more about:
»Broad Institute »DNA »Genetic »equine »horse

Sequencing of the domestic horse genome began in 2006, building upon a 10-year collaborative effort among an international group of scientists to use genomics to address important health issues for equines, known as the Horse Genome Project (www.uky.edu/Ag/Horsemap/). The horse whose DNA was used in the sequencing effort is a Thoroughbred mare named Twilight from Cornell University in Ithaca, N.Y. Researchers obtained the DNA from a small sample of the animal's blood. To download a high-resolution photo of Twilight, go to http://www.genome.gov/pressDisplay.cfm?photoID=20008. Twilight is stabled at the McConville Barn, Baker Institute for Animal Health, College of Veterinary Medicine, at Cornell University, with a small herd of horses that have been selected and bred for more than 25 years to study the mechanisms that prevent maternal immunological recognition and destruction of the developing fetus during mammalian pregnancy. The research, conducted by Cornell professor Doug Antczak, V.M.D, Ph.D., and funded by the National Institute of Child Health and Human Development, has implications in reproduction, clinical organ transplantation and immune regulation.

In addition to sequencing the horse genome, researchers produced a map of horse genetic variation using DNA samples from a variety of modern and ancestral breeds, including the Akel Teke, Andalusian, Arabian, Icelandic, Quarter, Standardbred and Thoroughbred. This map, comprised of 1 million signposts of variation called single nucleotide polymorphisms, or SNPs, will provide scientists with a genome-wide view of genetic variability in horses and help them identify the genetic contributions to physical and behavioral differences, as well as to disease susceptibility. There are more than 80 known genetic conditions in horses that are genetically similar to disorders seen in humans, including musculoskeletal, neuromuscular, cardiovascular and respiratory diseases. The SNPs are available at the Broad Institute web site (www.broad.mit.edu/mammals/horse/snp) and will be available shortly from NCBI's Single Nucleotide Polymorphism database, dbSNP (www.ncbi.nlm.nih.gov/SNP).

The initial sequencing assembly is based on 6.8-fold coverage of the horse genome, which means, on average, each base pair has been sequenced almost seven times over. Researchers can access the horse genome sequence data through the following public databases: GenBank (www.ncbi.nih.gov/Genbank) at NIH's National Center for Biotechnology Information (NCBI); NCBI's Map Viewer (www.ncbi.nlm.nih.gov); UCSC Genome Browser (www.genome.gucsc.edu) at the University of California at Santa Cruz; and the Ensembl Genome Browser (www.ensembl.org) at the Wellcome Trust Sanger Institute in Cambridge, England. The data is also available from the Broad Institute Web site (www.broad.mit.edu/ftp/pub/assemblies/mammals/horse/).

Over the next several months, researchers plan to further improve the accuracy of the horse genome sequence and expect to deposit an even higher resolution assembly in public databases. Comparing the horse and human genomes will help medical researchers learn more about the human genome and will also serve as a tool for veterinary researchers to better understand the diseases that affect equines. A publication analyzing the horse genome sequence and its implications for horse population genetics is being planned for the future.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: Broad Institute DNA Genetic equine horse

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>