Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's gene raises newborns' cerebral palsy risk

07.02.2007
Apolipoprotein E (APOE), a gene associated with heightened risk for Alzheimer's disease in adults, can also increase the likelihood that brain-injured newborns will develop cerebral palsy, researchers at Children's Memorial Research Center have discovered.

This is the first identification of a gene that increases susceptibility to cerebral palsy. Results of the study, published in the February issue of the journal Pediatrics, may enable early identification of children who are at risk for poor neuro-developmental outcome after brain injury as newborns and thus target those children for early therapeutic intervention.

The lead scientist on the study was Mark S. Wainwright, M.D., Ph.D., assistant professor of pediatrics (neurology) and molecular pharmacology and biological chemistry at Northwestern University's Feinberg School of Medicine and the Children's Memorial Research Center. Wainwright is also a researcher in the Center for Drug Discovery and Chemical Biology at Feinberg.

Wainwright and his laboratory group compared APOE genotypes in 209 children with cerebral palsy and a matched control group of children in good health. They found that children who carry the E4 or the E2 form (or allele) of the APOE gene are not only more likely to develop cerebral palsy but also to have more severe neurologic impairment following perinatal brain injury, just as adults who carry the E4 form of the APOE gene may be more susceptible to developing Alzheimer's disease and have worse outcome after brain injury, including stroke and head injury.

... more about:
»Alzheimer' »apoE »cerebral »cerebral palsy »palsy

Overall findings from the study showed that carrying the E4 allele was associated with greater than a threefold-elevated risk for cerebral palsy. The risk was higher for children with quadriplegia/triplegia and was associated with more severe motor impairment in this group.

Cerebral palsy affects two in every 1,000 school-aged children in the United States, has an annual economic toll on society estimated at $5 billion and is the most costly of the clinically significant birth defects in the United States.

Cerebral palsy encompasses a diverse group of disorders characterized by non-progressive impairment of motor function resulting from injury to the developing brain. Cerebral palsy is often associated with impaired intellectual function, sensory deficits, behavioral disorders and seizures. In the majority of cases, a specific cause for cerebral palsy cannot be identified.

The protein apoE that is coded by the APOE gene is produced in the brain, where it plays multiple roles, including protecting against injury. Wainwright said that the contribution of the APOE gene to susceptibility to neurologic injury might vary with age and the nature of the brain injury.

"People who carry the E4 allele may not be able to recover as effectively from a brain injury, making these newborns at greater risk for developing cerebral palsy," he said.

Wainwright hopes to conduct additional studies to confirm these findings in other populations and to evaluate the role of the apoE protein in specific biochemical pathways in the brain for development of cerebral palsy after perinatal brain injury.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Alzheimer' apoE cerebral cerebral palsy palsy

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>