Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could lightning give rise to life?

05.02.2007
Specialists of the Institute of Geology of Komi Research Center of Ural Branch, (Russian Academy of Sciences) and the Institute of Natural Resources, Ecology and Cryology, Siberian Branch (Russian Academy of Sciences) have for the first time described the formation that results from a stroke of lightning into a plant - phytofulgurite.

So far, it has been assumed that specific geological bodies are formed at the strike of lightning only if the lightning hits sedimentary rock or a cliff. However, it has turned out that dry grass sometimes turns into a complicated alloy resembling bitumen under the influence of the lightning. Normally, formation of such substances takes millions of years. This unusual stone contains amino acids typical of living organisms that could be formed only by abiogenous high-temperature synthesis.

Once, in the village of Podvolok in the Chita Region, lightning hit a haycock and burnt it down. This was quite an ordinary event but when the owner raked away the ashes , he noticed a small flat, blue-black, fibrous, glassy piece of unknown substance. Guessing that the find could be of interest, the natives decided to show it to geologists. It has turned out that inhabitants of Podvolok discovered a geological object – phytofulgurite - earlier unknown to science. This substance (close in composition to bitumens or humus) is formed in case of a lightning strike at vegetation. Within an instant of the highest temperature (almost 25 thousand degrees) and pressure, the vegetable biomass underwent such changes, which in less severe conditions last for millions of years.

The sample consisted of conglomerated fibers, staphyline structures, spheres and hollows of a different size, from fractions of a millimeter through several millimeters. Fibrous formations apparently repeated disposition of grass stems. The main elements making part of it are carbon, hydrogen, nitrogen and sulfur, the rest – approximately a third – being oxygen and trace elements. Such composition is typical of natural bitumens or humus.

... more about:
»acids »amino acid »bitumen »lightning

It is interesting to note that phytofulgirite contained the quantity of amino acids unprecedented for bitumens. Amino acids are present in any mineral oil and its natural derivatives, however, in this case their content turned out to be higher by a dozen of times. At that, 95 percent of amino acids belonged to left isomers, as it occurs in living organisms. Nevertheless, these amino acids could not be remains of grass – at such temperature all organic matter burns down completely.

The researchers assumed that amino acids in this case were formed abioticly – without participation of life, by high-temperature synthesis. This requires, on top of high temperature, X-radiation and gamma radiation. But these particular conditions do occur in the point of a lightning stroke. The researchers had managed earlier during the experiment to synthesize left amino acids at the laboratory in the course of solid bitumen irradiation. Maybe, this is the way protozoa organic compounds originated which gave rise to the first molecules of living creatures?

Detailed investigation of phytofulgurite (both chemically and under a microscope), has managed to discover traces of multiple processes that take place for example during lava solidification or after meteorite hitting the earth. Many years, even millions of years went into fractions of a second. If so, why not take advantage of this effect in order to observe geosphere history in the laboratory? Or it is possible to find purely practical application for it and to forward human activity waste “to the future” with the help of lightning.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: acids amino acid bitumen lightning

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>