Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grafts against cancer

05.02.2007
A major discovery to identify 'dangerous donors' in advance

A research team led by Prof. Claude Perreault, Université de Montréal, is announcing a major discovery in Genomics. This will generate a fundamental impact on the treatment of blood cancers (leukemias and lymphomes) by means of peripheral blood T-cell grafts.

Peripheral blood stem-cell grafts from immunologically-matched donors are still the best way to treat or cure patients with certain leukemias and lymphomas. In Canada alone, 10 000 people have benefited from this therapy. However, this type of graft is risky because of a major potential complication: "graft-versus-host disease" (GVHD). GVHD is a rejection of recipient tissues by the donor's T cells that see their new host as ‘non-self'. As many as 60% of recipients develop GVHD. In the best-case GVHD scenario, the disease markedly diminishes the patient's quality of life. In the most severe cases, GVHD may cause death. Because of the GVHD risk, graft of donor T cells can only be proposed to a small number of patients having leukemia or lymphoma. And until now, no reliable prediction could be made to determine if a recipient would be likely to incur GVHD or not. Published this week in the Public Library of Science Medicine (PLoS Medicine) this discovery provides a sure way of identifying cells that will cause GVHD.

Today's announced discovery opens the way to a reliable test to determine whether or not the cells of a donor will likely cause GVHD or not in the recipient, if the graft is performed. Creating a predictive test based on this discovery will have a considerable impact on the future of patients.

... more about:
»Cancer »GVHD »donor »leukemia

"A predictive test that will identify dangerous and non-dangerous donors will allow physicians to choose the best donor," explains Dr Perreault. "If no ‘non-dangerous donor' is found, then a physician can give the recipient a more intensive immuno-suppressive treatment to prevent GVHD. This opens the door to hematopoietic cell transplant personalized medicine."

"In this research, the special combinations of clinical design, advanced cell-sorting technology, large-scale gene expression profiling, and novel statistically-supported outcome-predictive computational analyses have produced together a very effective systems biology approach," says Biosystemix co-founder Dr. Larry Greller. "We are excited by the practicality and potential medical utility of these results, and look forward to their continuing validation in larger contexts," says Biosystemix co-founder Dr. Roland Somogyi.

For Génome Québec, it is a truly dramatic breakthrough that will not only improve and save lives, but also highlights the importance of backing and promoting knowledge in Genomics. According to Paul L'Archevêque, President and CEO of Génome Québec, "The researchers have done tremendous work! Clinical work will be transformed and moreover, first-line needs will be met in hospitals, from bench to bedside.".

The study involved 13 senior researchers and 50 patients suffering from haematological cancers and their respective immunologically-matched sibling donors. The patients were from the Maisonneuve-Rosemont hospital in Montreal. Statistical analysis and mathematical outcome-predictive modeling of these complex data were provided by the biotech company Biosystemix Ltd. In the coming months, the discovery will be extended in larger test phases to other hospitals in Canada and the US.

Damien Fiere | EurekAlert!
Further information:
http://www.iric.ca
http://www.genomequebec.com

Further reports about: Cancer GVHD donor leukemia

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>