Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Longevity by a nose (or odorant receptor)

05.02.2007
The heady odor of yeast paste partially counteracts the life-lengthening effects of nutrient restriction on fruit flies – leading Baylor College of Medicine researchers to believe that the fly’s perception that there is still food around may trigger a different metabolic state than one that exists when nutrients are limited.

In a report that appears online today in the journal Science Express, Dr. Scott Pletcher, assistant professor in the Huffington Center on Aging and Department of Human and Molecular Genetics at BCM, and his colleagues found that when the calorie-restricted flies were exposed to the odor of yeast paste (although they did not eat it), they did not live as long as insects who were on identical diets but who were not exposed to the odor.

“Odorants limit the benefits of calorie restriction,” Pletcher said.

Calorie restriction is a manipulation that has been shown to lengthen the lives of many different organisms, but the mechanisms through which this is achieved remains largely unknown. Moreover, the fact that reduced calories extend lifespan seems counterintuitive.

... more about:
»Libert »Pletcher »extend »odor »restriction

However, said Pletcher, dietary restriction does extend the lives of mice, and some data suggest that it also works in primates as well. How it works is not understood. Many feel that it works “through reduced energy,” said Pletcher. “Our work argues that reduced perception plays a role as well.”

“There may be a signaling mechanism that makes the organism operate more robustly when there are few resources (such as food),” said graduate student Sergiy Libert, who is lead author of the Science Express study. “Activating that signaling might be enough to provide the advantage and extend longevity.”

In his study, he said, “Flies that could smell rich food in the environment lived shorter lives than flies who ate the same amount of food but were not exposed to the odorant. The perception of a rich environment was sufficient to shorten the lifespan.”

In the second part of the study, the scientists tested fruit flies or Drosophila melanogaster that could not perceive odors well. The gene Or83b was mutated in these insects, leaving the flies with a severely reduced sense of smell, although they can smell some things.

“These flies appear to be much longer-lived,” said Libert. “There was as much as a 57 percent lifespan extension.” Most fruit flies live about 60 days. These lived longer than 80.

The researchers also found other differences in the flies who could not smell. The slightly obese female flies stored more triglycerides (which could then be used for energy). The flies that could not smell were also more stress-resistant.

“If you expose them to 100 percent oxygen, which is toxic they survive very well,” said Pletcher.

Pletcher, Libert and their colleagues do not know how applicable this finding is to higher-level organisms such as mice, primates and humans. For example, said Pletcher, a gene such as Or83b has not yet been described in mammals, which have hundreds of odor receptors, many of which have not been carefully studied.

They hope to figure out how exactly odors in general affect longevity in the fly and possibly extend that understanding to other organisms – even humans.

Although a gene such as Or83b has not yet been described in mammals, Pletcher, Libert and their colleagues suggest that this finding may be applicable in higher-level organisms such as mice, primates and humans, all of which have hundreds of odor receptors, many of which have not been carefully studied.

Laura Madden-Fuentes | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Libert Pletcher extend odor restriction

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>