Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Longevity by a nose (or odorant receptor)

The heady odor of yeast paste partially counteracts the life-lengthening effects of nutrient restriction on fruit flies – leading Baylor College of Medicine researchers to believe that the fly’s perception that there is still food around may trigger a different metabolic state than one that exists when nutrients are limited.

In a report that appears online today in the journal Science Express, Dr. Scott Pletcher, assistant professor in the Huffington Center on Aging and Department of Human and Molecular Genetics at BCM, and his colleagues found that when the calorie-restricted flies were exposed to the odor of yeast paste (although they did not eat it), they did not live as long as insects who were on identical diets but who were not exposed to the odor.

“Odorants limit the benefits of calorie restriction,” Pletcher said.

Calorie restriction is a manipulation that has been shown to lengthen the lives of many different organisms, but the mechanisms through which this is achieved remains largely unknown. Moreover, the fact that reduced calories extend lifespan seems counterintuitive.

... more about:
»Libert »Pletcher »extend »odor »restriction

However, said Pletcher, dietary restriction does extend the lives of mice, and some data suggest that it also works in primates as well. How it works is not understood. Many feel that it works “through reduced energy,” said Pletcher. “Our work argues that reduced perception plays a role as well.”

“There may be a signaling mechanism that makes the organism operate more robustly when there are few resources (such as food),” said graduate student Sergiy Libert, who is lead author of the Science Express study. “Activating that signaling might be enough to provide the advantage and extend longevity.”

In his study, he said, “Flies that could smell rich food in the environment lived shorter lives than flies who ate the same amount of food but were not exposed to the odorant. The perception of a rich environment was sufficient to shorten the lifespan.”

In the second part of the study, the scientists tested fruit flies or Drosophila melanogaster that could not perceive odors well. The gene Or83b was mutated in these insects, leaving the flies with a severely reduced sense of smell, although they can smell some things.

“These flies appear to be much longer-lived,” said Libert. “There was as much as a 57 percent lifespan extension.” Most fruit flies live about 60 days. These lived longer than 80.

The researchers also found other differences in the flies who could not smell. The slightly obese female flies stored more triglycerides (which could then be used for energy). The flies that could not smell were also more stress-resistant.

“If you expose them to 100 percent oxygen, which is toxic they survive very well,” said Pletcher.

Pletcher, Libert and their colleagues do not know how applicable this finding is to higher-level organisms such as mice, primates and humans. For example, said Pletcher, a gene such as Or83b has not yet been described in mammals, which have hundreds of odor receptors, many of which have not been carefully studied.

They hope to figure out how exactly odors in general affect longevity in the fly and possibly extend that understanding to other organisms – even humans.

Although a gene such as Or83b has not yet been described in mammals, Pletcher, Libert and their colleagues suggest that this finding may be applicable in higher-level organisms such as mice, primates and humans, all of which have hundreds of odor receptors, many of which have not been carefully studied.

Laura Madden-Fuentes | EurekAlert!
Further information:

Further reports about: Libert Pletcher extend odor restriction

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>