Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Longevity by a nose (or odorant receptor)

05.02.2007
The heady odor of yeast paste partially counteracts the life-lengthening effects of nutrient restriction on fruit flies – leading Baylor College of Medicine researchers to believe that the fly’s perception that there is still food around may trigger a different metabolic state than one that exists when nutrients are limited.

In a report that appears online today in the journal Science Express, Dr. Scott Pletcher, assistant professor in the Huffington Center on Aging and Department of Human and Molecular Genetics at BCM, and his colleagues found that when the calorie-restricted flies were exposed to the odor of yeast paste (although they did not eat it), they did not live as long as insects who were on identical diets but who were not exposed to the odor.

“Odorants limit the benefits of calorie restriction,” Pletcher said.

Calorie restriction is a manipulation that has been shown to lengthen the lives of many different organisms, but the mechanisms through which this is achieved remains largely unknown. Moreover, the fact that reduced calories extend lifespan seems counterintuitive.

... more about:
»Libert »Pletcher »extend »odor »restriction

However, said Pletcher, dietary restriction does extend the lives of mice, and some data suggest that it also works in primates as well. How it works is not understood. Many feel that it works “through reduced energy,” said Pletcher. “Our work argues that reduced perception plays a role as well.”

“There may be a signaling mechanism that makes the organism operate more robustly when there are few resources (such as food),” said graduate student Sergiy Libert, who is lead author of the Science Express study. “Activating that signaling might be enough to provide the advantage and extend longevity.”

In his study, he said, “Flies that could smell rich food in the environment lived shorter lives than flies who ate the same amount of food but were not exposed to the odorant. The perception of a rich environment was sufficient to shorten the lifespan.”

In the second part of the study, the scientists tested fruit flies or Drosophila melanogaster that could not perceive odors well. The gene Or83b was mutated in these insects, leaving the flies with a severely reduced sense of smell, although they can smell some things.

“These flies appear to be much longer-lived,” said Libert. “There was as much as a 57 percent lifespan extension.” Most fruit flies live about 60 days. These lived longer than 80.

The researchers also found other differences in the flies who could not smell. The slightly obese female flies stored more triglycerides (which could then be used for energy). The flies that could not smell were also more stress-resistant.

“If you expose them to 100 percent oxygen, which is toxic they survive very well,” said Pletcher.

Pletcher, Libert and their colleagues do not know how applicable this finding is to higher-level organisms such as mice, primates and humans. For example, said Pletcher, a gene such as Or83b has not yet been described in mammals, which have hundreds of odor receptors, many of which have not been carefully studied.

They hope to figure out how exactly odors in general affect longevity in the fly and possibly extend that understanding to other organisms – even humans.

Although a gene such as Or83b has not yet been described in mammals, Pletcher, Libert and their colleagues suggest that this finding may be applicable in higher-level organisms such as mice, primates and humans, all of which have hundreds of odor receptors, many of which have not been carefully studied.

Laura Madden-Fuentes | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Libert Pletcher extend odor restriction

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>