Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise Echoes in Cell Communications

02.02.2007
Can’t hear? Turn up the white noise, says a team of Rutgers-Camden professors who have produced a mathematical explanation for the benefits of noise. Their findings could lead to major improvements in hearing aid technology.

Dawei Hong, an assistant professor of computer science, Joseph Martin, a professor of biology, and William Saidel, an associate professor of biology, are working together to explain the biological benefits of noise through mathematics. Although the Rutgers-Camden team did study noise in the auditory system, “noise” can also refer to not just what we hear, but a randomness that is essential to all life.

“There is no life without noise; noise is the secret of life,” suggests Martin, who points to the constant movement of particles under a microscope to illustrate this phenomena. Unlike a physics experiment that can produce the same result after various attempts, in biology, one particular experiment can yield a multitude of outcomes.

This randomness, however, isn’t problematic, but a necessary function for survival. Until now, the role of randomness in sustaining life has been a great and unsolved problem. The collaborative research underway at Rutgers-Camden has led to new understanding of how living organisms might exploit randomness for important processes of sensory processing and cell to cell communication.

... more about:
»Doctoral »Hong »Rutgers-Camden »degree »randomness

In terms of hearing, the Rutgers-Camden research team’s mathematical theory improves previous knowledge by offering a single explanation of the properties of noise in hearing under different conditions. To develop the theory, Hong used a variation on the wavelet technique, which he says is responsible for clarifying the JPG image. The findings could have numerous applications – most obviously in treating hearing loss by artificially increasing the amount of noise in the cochlea of the inner ear, perhaps by an implanted device.

Hong, Saidel and Martin applied this principle of noise to another process called “quorum sensing” – how bacteria signal one another to act collectively when causing an infection. The Rutgers-Camden research team used bacteria as a starting point for observing how noise enhances cell-to-cell communication. A full understanding of how this simple form of communication works might show how to disrupt it, and the resulting infection. The team will next apply their idea to the nervous system, where the cell’s entire job is to communicate.

Published in top journals on theoretical biology, this collaborative research between biology and computer science faculty at Rutgers-Camden is part of a thrust to ultimately offer a doctoral program in computational and integrative biology on the Camden campus. “We talk about biological problems and apply mathematical principles,” says Martin, who believes the development of the Systems Biology Institute in Camden, which will be managed by Rutgers-Camden, will further advance the systems biology discipline in South Jersey.

Educated at the East China Normal University, Hong received his doctoral degree in computer science from the University of Nebraska at Lincoln. He joined the Rutgers-Camden faculty in 2001. Hong resides in Mount Laurel.

Martin received his bachelor’s degree in neuroscience from Northwestern University and his doctoral degree in neurobiology from the University of California at Los Angeles. A Rutgers-Camden faculty member since 1989, Martin resides in Medford Lakes.

Saidel received both bachelor’s and doctoral degrees from the Massachusetts Institute of Technology and has been at Rutgers-Camden since 1992. Saidel resides in Cherry Hill.

Mike Sepanic | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Doctoral Hong Rutgers-Camden degree randomness

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>