Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise Echoes in Cell Communications

02.02.2007
Can’t hear? Turn up the white noise, says a team of Rutgers-Camden professors who have produced a mathematical explanation for the benefits of noise. Their findings could lead to major improvements in hearing aid technology.

Dawei Hong, an assistant professor of computer science, Joseph Martin, a professor of biology, and William Saidel, an associate professor of biology, are working together to explain the biological benefits of noise through mathematics. Although the Rutgers-Camden team did study noise in the auditory system, “noise” can also refer to not just what we hear, but a randomness that is essential to all life.

“There is no life without noise; noise is the secret of life,” suggests Martin, who points to the constant movement of particles under a microscope to illustrate this phenomena. Unlike a physics experiment that can produce the same result after various attempts, in biology, one particular experiment can yield a multitude of outcomes.

This randomness, however, isn’t problematic, but a necessary function for survival. Until now, the role of randomness in sustaining life has been a great and unsolved problem. The collaborative research underway at Rutgers-Camden has led to new understanding of how living organisms might exploit randomness for important processes of sensory processing and cell to cell communication.

... more about:
»Doctoral »Hong »Rutgers-Camden »degree »randomness

In terms of hearing, the Rutgers-Camden research team’s mathematical theory improves previous knowledge by offering a single explanation of the properties of noise in hearing under different conditions. To develop the theory, Hong used a variation on the wavelet technique, which he says is responsible for clarifying the JPG image. The findings could have numerous applications – most obviously in treating hearing loss by artificially increasing the amount of noise in the cochlea of the inner ear, perhaps by an implanted device.

Hong, Saidel and Martin applied this principle of noise to another process called “quorum sensing” – how bacteria signal one another to act collectively when causing an infection. The Rutgers-Camden research team used bacteria as a starting point for observing how noise enhances cell-to-cell communication. A full understanding of how this simple form of communication works might show how to disrupt it, and the resulting infection. The team will next apply their idea to the nervous system, where the cell’s entire job is to communicate.

Published in top journals on theoretical biology, this collaborative research between biology and computer science faculty at Rutgers-Camden is part of a thrust to ultimately offer a doctoral program in computational and integrative biology on the Camden campus. “We talk about biological problems and apply mathematical principles,” says Martin, who believes the development of the Systems Biology Institute in Camden, which will be managed by Rutgers-Camden, will further advance the systems biology discipline in South Jersey.

Educated at the East China Normal University, Hong received his doctoral degree in computer science from the University of Nebraska at Lincoln. He joined the Rutgers-Camden faculty in 2001. Hong resides in Mount Laurel.

Martin received his bachelor’s degree in neuroscience from Northwestern University and his doctoral degree in neurobiology from the University of California at Los Angeles. A Rutgers-Camden faculty member since 1989, Martin resides in Medford Lakes.

Saidel received both bachelor’s and doctoral degrees from the Massachusetts Institute of Technology and has been at Rutgers-Camden since 1992. Saidel resides in Cherry Hill.

Mike Sepanic | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Doctoral Hong Rutgers-Camden degree randomness

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>