Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Noise Echoes in Cell Communications

Can’t hear? Turn up the white noise, says a team of Rutgers-Camden professors who have produced a mathematical explanation for the benefits of noise. Their findings could lead to major improvements in hearing aid technology.

Dawei Hong, an assistant professor of computer science, Joseph Martin, a professor of biology, and William Saidel, an associate professor of biology, are working together to explain the biological benefits of noise through mathematics. Although the Rutgers-Camden team did study noise in the auditory system, “noise” can also refer to not just what we hear, but a randomness that is essential to all life.

“There is no life without noise; noise is the secret of life,” suggests Martin, who points to the constant movement of particles under a microscope to illustrate this phenomena. Unlike a physics experiment that can produce the same result after various attempts, in biology, one particular experiment can yield a multitude of outcomes.

This randomness, however, isn’t problematic, but a necessary function for survival. Until now, the role of randomness in sustaining life has been a great and unsolved problem. The collaborative research underway at Rutgers-Camden has led to new understanding of how living organisms might exploit randomness for important processes of sensory processing and cell to cell communication.

... more about:
»Doctoral »Hong »Rutgers-Camden »degree »randomness

In terms of hearing, the Rutgers-Camden research team’s mathematical theory improves previous knowledge by offering a single explanation of the properties of noise in hearing under different conditions. To develop the theory, Hong used a variation on the wavelet technique, which he says is responsible for clarifying the JPG image. The findings could have numerous applications – most obviously in treating hearing loss by artificially increasing the amount of noise in the cochlea of the inner ear, perhaps by an implanted device.

Hong, Saidel and Martin applied this principle of noise to another process called “quorum sensing” – how bacteria signal one another to act collectively when causing an infection. The Rutgers-Camden research team used bacteria as a starting point for observing how noise enhances cell-to-cell communication. A full understanding of how this simple form of communication works might show how to disrupt it, and the resulting infection. The team will next apply their idea to the nervous system, where the cell’s entire job is to communicate.

Published in top journals on theoretical biology, this collaborative research between biology and computer science faculty at Rutgers-Camden is part of a thrust to ultimately offer a doctoral program in computational and integrative biology on the Camden campus. “We talk about biological problems and apply mathematical principles,” says Martin, who believes the development of the Systems Biology Institute in Camden, which will be managed by Rutgers-Camden, will further advance the systems biology discipline in South Jersey.

Educated at the East China Normal University, Hong received his doctoral degree in computer science from the University of Nebraska at Lincoln. He joined the Rutgers-Camden faculty in 2001. Hong resides in Mount Laurel.

Martin received his bachelor’s degree in neuroscience from Northwestern University and his doctoral degree in neurobiology from the University of California at Los Angeles. A Rutgers-Camden faculty member since 1989, Martin resides in Medford Lakes.

Saidel received both bachelor’s and doctoral degrees from the Massachusetts Institute of Technology and has been at Rutgers-Camden since 1992. Saidel resides in Cherry Hill.

Mike Sepanic | EurekAlert!
Further information:

Further reports about: Doctoral Hong Rutgers-Camden degree randomness

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>