Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Motors and Brakes Work Together in Cells

31.01.2007
Interaction sheds light on how cells inner skeleton is organized

Researchers at the University of Pennsylvania School of Medicine have discovered that microtubules – components responsible for shape, movement, and replication within cells – use proteins that act as molecular motors and brakes to organize into their correct structure. If microtubules are not formed properly such basic functions as cell division and transport can go wrong, which may have implications in such disease processes as cancer and dementia. The study, published in the January issue of Cell, is featured on the cover of that issue.

“Up until now motors and brakes were studied separately from microtubules,” says senior author Phong Tran, PhD, Assistant Professor of Cell and Developmental Biology. “This study lets us have a more complete picture.”

Microtubules are structures that help give shape to many types of cells, form the spindle (view video below) – a structure important in cell division – and act as a railroad, of sorts, upon which molecular motors move protein packages for waste removal and nerve transmission.

... more about:
»microtubule »molecular motor »mother

Microtubules in live fission yeast cell.

In the Cell study, the investigators, working with fission yeast cells, showed that stable end-to-end arrays of microtubules can be achieved by a balance between the sliding by a molecular motor called klp2p and the braking of a microtubule-associated protein (MAP) called ase1p. Specifically, they showed that a preexisting “mother” microtubule acts as a platform on which a new microtubule can be formed (view video below). The new “daughter” microtubule grows and moves along the mother microtubule. In time, the daughter grows beyond the end of the mother to ultimately produce two microtubules, connected by the cross-linking MAP ase1p.

Daughter microtubule (red) being formed on mother microtubule (red), within yeast cell (dashed line). Green represents the molecular motors, the kinesin proteins klp2, of each microtubule.

“Imagine that the daughter microtubule is a short train on the track of the mother microtubule,” explains Tran. “The molecular motor is the train’s engine, but the problem is that the cargo – the molecular brakes – gets longer, slowing down the daughter train. But when the train gets to the end of the track it remains attached to the end of mother microtubule. At the tail end, it stops moving and that defines the region of overlap. Our work shows that the cell can make microtubule structures of defined lengths stable by coordinating the sliding of the motors and the slowing of the brakes.”

If microtubule-based structures are not formed properly because of failures in brakes or motors, such basic functions as cell division and cell transport can go awry, with such diseases as cancer and dementia possibly resulting. “For the first time we have shown how MAPs and motors work together in a mechanistic way,” says Tran. “This is important and it will make other people who study microtubules rethink how they study the cell.”

Co-authors are Marcel E. Jansen, Isabelle Loïodice, and Chuanhai Fu, all from Penn, and Rose Loughlin, Damian Brunner, and François J. Nédélec from the European Molecular Biology Laboratory, Heidelberg, Germany. The research was sponsored by the National Institutes of Health.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: microtubule molecular motor mother

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>